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Abstract

In this paper the existing methodology of conditioning Taylor approx-
imation is used to solve a general model from the area of pensions. More
speci�cally, I searched for the optimal multi-period investment strategy of
an investor whose accumulation phase (lasting M years) is followed by an
annuization period (lasting N years). When choosing the optimal asset
mix, I restricted the analysis to the class of constant mix dynamically
rebalanced strategies, with optimization criterion set to the probability of
default.

I show by means of a numerical illustration that the solutions of the
approximate procedure closely relate to the results of Monte Carlo simu-
lation.

As the results indicate increasing the withdrawal rate (annuity) and
increasing the investment horizon increases the allocation to risky assets.
Namely, when the withdrawal rate gets too large for the risk free invest-
ment strategy to provide a 100 % guarantee, the bene�ts of going more
towards risky investment become more and more pronounced.

Keywords: pension problematic, constant mix investment strategy,
comonotonic approximations.

1 Introduction

In the past, in contrast to the American system European countries largely sup-
ported a more "social" pension system (also known as the "pay as you go" sys-
tem). The sustainability of this system is based on the sole premise of a constant
proportion between the working generation and retirees since the contributions
of the active generation are transferred to retirees. Recent demographic trends
have raised questions about the long-term stability of such a system and have
led to debates about reform of the pension system.
As the examples of some countries indicate part of the solution to this prob-

lem can come in the form of increased personal saving. Whether saving is
performed through a �nancial intermediary (i.e mutual fund, bank etc) or di-
rectly in the form of investments in the stock and bond market, an important
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question arises: what is the optimal investment strategy given an investor�s age,
risk preferences and future consumption?
There is a vast amount of literature on this topic. The �rst to address this

question was Merton (1971), who solved a multi-period portfolio problem of
an investor with given consumption and utility de�ned preferences. Recently, a
number of authors (Khorasanee (1996), Milevsky (1998), Milevsky and Robinson
(2000), Albrecht and Maurer (2002), Orszag (2002), Gerrard et al. (2003), Dus
et al. (2003), Vandu¤el et al.(2003), Young (2003) and Dhaene et al. (2005))1

have focused on a similar problem, which di¤ers from Merton�s setting in one
important aspect. Within their frameworks the authors calculate the probability
that a retiree depletes his wealth while he is still alive (ruin probability or default
probability). The approach to de�ning an investor�s objective function through
the probability of ruin or the probability of default is in contrast to most of the
�nancial literature on this subject where an investor�s preferences are de�ned
via a utility function. Besides the fact that utility functions prove to be a
poor representative of an investor�s preferences, the approach of optimising the
probability of ruin also makes more sense from the point of view of a regulator or
�nancial intermediary, which primarily cares about the stability of their ongoing
business.
Despite the enormous theoretical advancements in the area of pensions, there

are only a limited number of cases where one can �nd analytical solutions to pro-
posed models. In most cases, however, solutions can only be obtained through
numerical calculations and have little practical value to anyone outside the aca-
demics �eld.
In this paper I wish to remedy this situation by extending the results2 of

Dhaene et al. (2002a;2002b, 2003, 2004b), Hodemakers et al. (2003, 2004a,
2004b), Ahµcan (2004, 2005a;b) and Vandu¤el et al. (2004, 2005) where the au-
thors develop bounds in the sense of a convex order to yield an approximating
sequence for sums of log-normal dependent random variables. In contrast to
the work by Dhaene et al. (2002a;b) where the authors �nd approximations
for a single signed stream of cash �ows I extend their idea of comonotonic ap-
proximations to the case of positive and negative cash �ows (i.e positive in�ows
are taken to represent investment, whereas negative cash �ows are taken to
represent consumption)3 .
Within this theoretical setup I address a general problem from the area of

pensions. I search for the optimal investment strategy of an individual who
accumulates the wealth necessary for his retirement by periodically investing in
a basket of securities for a period of M years. This accumulation phase that
lasts M years is then followed by an annuisation period of N years. I search

1Josa-Fombellida (2001) searched for the contribution rate (within a DB plan) amortising
the unfunded actuarial liability, in order to minimise the contribution rate risk and the solvency
risk, while Blake et al. (2003) examined the choices available to a de�ned contribution (DC)
pension plan member at the time of retirement for conversion of his pension fund into a stream
of retirement income.

2A similar method is found in Ahµcan (2005d).
3A similar problem is considered in Vandu¤el et al. (2005).
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for such an investment strategy that minimises the probability of default (or
lifetime ruin probability) given a �xed periodic investment amount during the
accumulation phase and a �xed withdrawal rate during the annuisation part.
When choosing the optimal asset mix, I restrict myself to the class of con-

stant mix dynamically rebalanced strategies. As shown by several authors, the
constant mix portfolios are in some sense optimal and are proven to be theoret-
ically the most convenient (see Merton (1971), Merton (1990)).
The structure of this paper is as follows. Section 2 introduces the concepts of

comonotonicity and stochastic dominance. The next Section gives an overview
of the model characteristics: investor preferences, market dynamics. Section
4 explains the main idea behind the approximate approach. The next Section
introduces the general pension model. The methodology used to obtain solutions
is given in Section 6. The results along with comments are presented in Section
7. In the last Section I give �nal remarks.

2 Comonotonicity and stochastic dominance

2.1 Comonotonicity, comonotonic sets and comonotonic
random vectors

In this subsection I introduce the concepts of comonotonicity, comonotonic sets
and comonotonic random vectors. First I state the de�nition of the comonotonic
set (see e.g. Dhaene et al. (2003)).
Let �!x ;�!y denote two random vectors in Rn and let �!x � �!y denote compo-

nentwise order which is de�ned by xi � yi for all 1 � i � n:

De�nition 1 The set A � Rn is said to be comonotonic if for any �!x ;�!y �A the
following relationship holds �!x � �!y or �!y � �!x .

Observe that from the de�nition it follows that any comonotonic set is si-
multaneously non-decreasing in each component. Thus a comonotonic set is a
thin set, it cannot contain subsets with a dimension bigger than 1. Moreover,
any subset of a comonotonic set is also comonotonic.
By having de�ned a comonotonic set I can proceed to de�ne a comonotonic

vector.

De�nition 2 A random vector Y = (Y1; Y2; � � � ; Yn) is said to be comonotonic
if

(Y1; Y2; � � � ; Yn)
d
= (F�1Y1 (U); F

�1
Y2
(U); � � � ; F�1Yn (U)); (1)

where U is a random variable which is uniformly distributed on the unit interval

and where the notation d
= stands for �equality in distribution�.

For any random vector X = (X1; X2; � � � ; Xn), I will call its comonotonic
counterpart any random vector with the same marginal distributions and with
the comonotonic dependency structure. The comonotonic counterpart of X =
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(X1; X2; � � � ; Xn) will be denoted by Xc = (Xc
1 ; X

c
2 ; � � � ; Xc

n): Hence for any
random vector X = (X1; X2; � � � ; Xn), one has

(Xc
1 ; X

c
2 ; � � � ; Xc

n)
d
= (F�1X1

(U); F�1X2
(U); � � � ; F�1Xn

(U)): (2)

It can be proven that a random vector is comonotonic if and only if all its
marginals are non-decreasing functions (or all are non-increasing functions) of
the same random variable.

2.2 Stochastic dominance

De�nition 3 Consider two random variables X and Y. X is said to precede
Y in the stochastic dominance sense, notation X �st Y , if and only if the
distribution function of X always exceeds that of Y:

FX(x) � FY (x); �1 < x <1: (3)

Stochastic dominance is a concept often used in actuarial literature to dif-
ferentiate between more and less "dangerous" random variables. For example,
if one has to choose between two risks (losses) X and Y with one preceding the
other in a stochastic dominance sense (say X �st Y ) it is trivial to show that
all decision-makers prefer X over Y .

3 The model

Consider a problem of an investor who makes periodic investment into the cap-
ital market in order to provide himself with a periodic annuity.

3.1 Preferences

The investor chooses his dynamic portfolio so as to minimise the probability
of default. Since the default will occur if and only if the end-period wealth
is negative (a point that will be made especially clear in one of the following
sections), one can choose the optimisation rule with regard to the end period
wealth or the probability of negative end-period wealth

minFWn
(0):

Here FWn
represents the cumulative distribution function of the end-period

wealth Wn, with FWn
(0) giving the probability of default.

Note that the choice of the optimisation criterion contrasts the usual ap-
proach within the �eld of �nance where maximisation is done with respect to
utility de�ned preferences. The choice of the probability of default can be justi-
�ed by the fact that investors and regulators care primarily about the long-term
sustainability of their business.
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3.2 Market dynamics

In describing the market dynamics I adopt the so-called Black & Scholes frame-
work (see Black et al. 1973).

3.2.1 The Black & Scholes setting

Consider a market of n+1 securities which are traded openly and can be bought
or sold without incurring any cost. One of the assets is assumed to be risk free,
the others are risky. The price of the risk-free asset evolves according to the
following deterministic (ordinary) di¤erential equation

dP (0)(t)
P (0)(t)

= rdt;

where r stands for the drift or return of the risky asset. Thus the price of the
risk-free asset grows exponentially and can be given explicitly by

P (0)(t) = P (0) exp(rt);

with P (0) denoting the amount that was invested at time 0.
Other assets are assumed to be risky in the sense that their price is not

deterministic and evolves according to a following stochastic di¤erential equa-
tion. The price process P i(t) evolves according to a geometric Brownian motion
stochastic process, represented by the following stochastic di¤erential equation:

dP i(t)

P i(t)
= �idt+

dX
j=1

�ijdW
j(t); i = 1; � � � ;m; (4)

with �i > r the drift of the i-th risky asset and
�
W 1(s); W 2(s); � � � ; W d(s)

�
a

d-dimensional standard Brownian motion process. Here it is assumed that the
W i(s) are mutually independent standard Brownian motions.
The di¤usion matrix � is de�ned by

� =

0BB@
�11 �12 � � � �1d
�21 �22 � � � �2d
� � � � � � � � � � � �
�m1 �m2 � � � �md

1CCA (5)

whereas the matrix � (re¤ered to also as the variance-covariance matrix) is
de�ned as

� =���T =

0BB@
�21 �12 � � � �1m
�21 �22 � � � �2m
� � � � � � � � � � � �
�m1 �m2 � � � �2m

1CCA ; (6)

with coe¢ cients �ij and �2i given by �ij =
Pd

k=1 �ik �jk and �
2
i = �ii. Observe

that �ij = �ji; hence the matrix is symetric. Additionaly we assume that � is
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positive de�nite. Thus for all non-zero vectors �T = (�1; �2; � � � ; �m) we have
that all �i are strictly positive and that � has a matrix inverse ��1.
If one de�nes the process Bi(s) by

Bi(s) =
1

�i

dX
j=1

�ijW
j(s): (7)

than equation 4 can be rewritten as:

dP i(t)

P i(t)
= �idt+ �idB

i(t); i = 1; � � � ;m: (8)

Observe, that in contrast to equationW i(�) were uncorrelated standard Brown-
ian motion, the Bi(�) are (correlated) standard Brownian motions, with

Cov
�
Bi(t); Bj(t+ s)

�
=

�ij
�i �j

t; t; s � 0: (9)

The solution to equation (8) is

P (i)(t) = P (i) exp
�
(�i �

1

2
�2i )t+ �iB

(i)(t)
�
; (10)

with P (i) as before denoting the price of i-th risky asset at time 0.
From equation (10) one �nds the price of the risky asset to be log-normally

distributed with the �rst two moments given by

E[P (i)(t)] = P (i) exp
�
�it
�
;

Var[P (i)(t)] = (P (i))2 exp
�
2�it

��
exp(�2i t)� 1

�
:

A more detailed representation of a multidimensional return process in a
Black & Scholes setting can be found in e.g. Björk (1998) or Dhaene et al.
(2004b).

3.2.2 Constant mix investment strategies

In this Section I brie�y recapitulate of the most important results on the topic
of constant mix investment strategies.
As before, consider a market of n risky and one risk-free security. Within

this setting, any investment strategy can be characterised by an allocation vector
�(t) =

�
�0(t); �1(t); : : : ; �n(t)

�T
, with �i(t) denoting the percentage of the i-th

risky asset held at time t; and �0(t) the percentage of risk-free asset in the
portfolio. Observe that the fraction placed in the risk-free asset is determined
by the aggregate percentage of all risky assets in the portfolio

�0(t)= 1�
nX
i=1

�i(t):
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In the case of a constant mix investment strategy, the percentages (in terms of
value) of di¤erent assets remain constant over time, so that the time component
can be dropped �

�0(t); �1(t); : : : ; �n(t)
�T
=
�
�0; �1; : : : ; �n

�T
:

Although the proportions of each asset type are independent of time, the port-
folio nevertheless has to be continuously rebalanced in order to keep the per-
centages of each asset type constant. This strategy implies a �buy low and sell
high�principle. Namely, if a price of an asset falls while the prices of all other
assets remain constant, one should increase the quantity of that stock (which
has fallen) and reduce the quantity of other securities to maintain a constant
mix within one�s portfolio.
Given a class of constant mix strategies ~� one can prove that the portfo-

lio price process P (t) evolves according to the following stochastic di¤erential
equation

dP (t)

P (t)
=

mX
i=1

�i
dP i(t)

P i(t)
+

 
1�

mX
i=1

�i

!
dP 0(t)

P 0(t)
(11)

=

 
mX
i=1

�i (�i � r) + r
!
dt+

mX
i=1

�i �idB
i(t):

If we introduce a process B(�) by

B(�) =
1p

~�0 ��� ~�

mX
i=1

�i �i B
i(�): (12)

It can be shown that B(�) is a standard Brownian motion, so that we can
rewrite equation 11.

dP (t)

P (t)
= �(~�)dt+ �(~�)dB(t); (13)

with B(t) a standard Brownian motion and �(~�) and �2(~�) de�ned as

�(~�) = r + ~�T � (~�� r1) and �2(~�) = ~�T �� � ~�:

Here 1 denotes the m-dimensional vector of ones (1; 1; : : : ; 1)T ; and � stands
for a variance-covariance matrix which is assumed to be positive de�nite. The
solution of equation (13) is

P (t) = P exp
�
(�(~�)� 1

2
�2(~�))t+ �(~�)B(t)

�
; (14)

with expectation and variance given by

E[P (t)] = P exp
�
�(~�)t

�
;

Var[P (t)] = P 2 exp
�
2�(~�)t

��
exp(�2(~�)t)� 1

�
:
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Throughout this Section I use the concept of yearly return, which gives the
log-value of one money unit investment after a one-year period. In line with
equation (14) a return in year k can be written as

Yk(~�) = �
0(~�) + �(~�)

�
B(k)�B(k � 1));

with �0(~�) (where �0(~�) is equal to �(~�) � 1
2�

2(~�)) denoting the drift, �(~�)
standard deviation (on a yearly basis) of investment strategy ~� and B(k) stands
for a standardised Brownian motion. In more general terms, the value of a single
unit investment over a period of k years expressed in terms of yearly returns
can be written as

P (k) = P exp
�
Y1(~�) + Y2(~�) + � � �+ Yk(~�)

�
:

Observe that the yearly returns Y1(~�) are independent and normally distributed,
hence the return over a period of k years is also normally distributed.

4 Conditioning on the �rst order Taylor series
expansion

In this Section I give a brief overview of the basics of the approximating proce-
dure of conditioning Taylor approximation. A more detailed explanation of the
topic can be found in papers by Dhaene et al. (2002a;b) and Ahµcan (2005a;c).
As I will be dealing with the sums/di¤erences of lognormal random variables

it makes sense to explain the methodology in a similar case. Thus, consider a
linear combination of lognormal variables

Ln =
nX
i=1

�i exp
�
Y (i)); (15)

with �i denoting payments made in year i and Y (i) denoting the return on
investment made in year i (more precisely Y (i) denotes the return from year i
to year n).
Observe that

�!
Y = (Y (1); Y (2);���; Y (n)) is a random vector following the

multivariate normal law and we thus need to �nd an approximating sequence
for a sum of log-normally distributed dependent random variables.
In general (if at least two of yearly payments �i are non-zero and n � 2) it

is not possible to obtain an analytical expression for the distribution function of
Ln. When one tries to solve this problem two quick solutions come to mind. An
obvious and well-practiced approach involves using a Monte Carlo simulation,
which is useful to the extent to which it can be made accurate. Unfortunately,
this comes at a price: the time required to perform such simulations is often
unrealistic. One way to avoid time-consuming Monte Carlo simulations is to ap-
proximate the sum in question by a �rst-order Taylor expression which yields an
approximating sequence that is normally distributed. Yet a convenient solution
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that allows one to easily calculate the distribution function and its quantiles is
at the same time very limited. Namely, this approach will work well only if the
variances of the components of the vector of returns

�!
Y are very small, which in

practice will hardly ever be the case.
Under the time constraint of using the Monte Carlo simulation and the

limited applicability of �rst-order Taylor approximation, one may ask if there is
a method that is at the same time su¢ ciently accurate and not time consuming.
As �rst shown by Rogers and Shi (1995) the technique of conditioning pro-

vides such a solution since it is both highly accurate and analytical. Following
their methodology, the sum in question (15) can be approximated by the fol-
lowing sequence

E [Ln j �] =
nX
i=1

�i � E
h
eY (i) j �

i
; (16)

where E denotes the expectation operator with the conditioning variable4 �
de�ned by

� =
nX
i=1

�i � eE[Y (i)] � Y (i): (17)

Before explaining the logic behind this approach, �rst observe that the con-
ditioning random variable is equal to the �rst-order Taylor expansion of (15)
around the expected values of Y (i) (the only di¤erence between the two is in
the constant term which in no way in�uences the statistical properties of the
approximated sum).
Now I may proceed to explain why the technique of conditioning Taylor is

superior to the �rst-order Taylor series approximation. Note that the �rst-order
Taylor series expansion misinterprets the original sum or, more accurately, the
terms which appear in the approximated sum; a sum of log-normals is replaced
by a sum of normally distributed variables with each log-normally distributed
term (random variables) being replaced by its normally distributed counterparts
(in terms of the distribution function). In contrast to the �rst-order Taylor
series expansion, the conditioning technique gives both an accurate description
of the stochastic process by accurately capturing the statistics of the return
vector with the choice of the conditioning random variable � (i.e note that the
set of all outcomes of Ln is well determined by the set of (events or) possible
realisations of the return vector

�!
Y ) and, at the same time, adequately describes

(approximates) the terms appearing in the sum; a log-normal term is replaced
by its log-normally distributed counterpart. Thus the conditioning technique
can be regarded as a two level process; at the �rst level the statistics of the
process Ln(randomness) are captured by the conditioning random variable �,
and at the second level the sum of returns (de�ned by the set of outcomes in
�) is transformed by the technique of conditioning to the sum of exponents of

4For more on choosing the appropriate conditioning random variable, see Vandu¤el et al.
(2004).
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returns (log-normal random variables). As shown in Dhaene et al. (2002a;b), the
choice of conditioning random variable in (17) yields an approximating sequence

E [Ln j �] =
nX
i=0

�i e
(n�i) �(�)+ 1

2 (1�r
2
i (�)) (n�i) �

2(�)+ri(�)
p
n�i �(�) ��1(U);

(18)
where U is an uniformly distributed random variable, that follows from

��1(U) =
�� E(�)
��

(19)

and ri is the correlation coe¢ cient between Y (i) and �

ri (�) =

Pn
j=i+1

Pj�1
k=0 �k e

k �(�)

p
n� i

rPn
j=1

�Pj�1
k=0 �k e

k �(�)
�2 : (20)

Observe that the correlation coe¢ cients ri (�) are non-negative, which implies
that the sum in (18) is strictly increasing in ��1(U). Therefore, the quantiles
of the distribution function in (18) are equal to

Qp(E [Ln j �]) =
nX
i=0

�i e
(n�i) �(�)+ 1

2 (1�r
2
i (�)) (n�i) �

2(�)+ri(�)
p
n�i �(�) ��1(p);

(21)
with Qp denoting the quantile of the distribution function of E [Ln j �] :
In contrast to the �rst-order Taylor series expansion, the conditioning tech-

nique has a much wider range of applicability; as long as the volatility of returns
is below 30% the approximations in (21) provide an excellent �t against sim-
ulated quantiles (see, for example, Dhaene et al. (2002a;b), Milevsky (2004),
Ahµcan et al. (2004, 2005a)).

5 A general pension problem

As mentioned we consider a multi-period portfolio problem of an investor who
has to accumulate enough wealth by periodically investing in the capital market
to ful�ll a set of future deterministic obligations (annuities). The investor�s
horizon consists of an investment phase that is taken to last M years and an
annuisation period of N years.
The amounts �i (deposits) are assumed to be non-negative, with i = 1; :;M ,

while �i (i.e. withdrawals, consumption or annuities) are assumed to be non-
positive, with i = M + 1; :;M + N . As depicted in the picture the end-period
wealth S(M +N) is then simply equal to

S(M +N) =

M+NX
i=1

�i � eZ(i) �
M+NX
i=M+1

�i � eZ(i); (22)
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Figure 1: Multi-period consumption and savings.

with Z(i) denoting the returns over the investment horizon

Z(i) = (Yi + :::+ YM+N ); i �M; (23)

Z(i) = (Yi+1 + :::+ YM+N ); i > M: (24)

Observe that the �rst term in (22) gives the accumulated value of invest-
ments at the end of the investment horizon while the last part gives the sum of
consumption over the period (discounted to the end of the investment horizon).
Thus S(M +N) can be regarded as the future value of the di¤erence between
the two (investment minus consumption).
One can quite easily show that the probability of default over the whole

investment period (a default is declared if the amount of wealth at any time
t � T is smaller than the consumption �i over the same period) is simply equal
to the probability of negative end-period wealth

Pr(S(t) � 0;M � t �M +N) = Pr(S(M +N) � 0): (25)

This result is a simple consequence of the fact that if inter-temporal wealth
(the di¤erence between the accumulated wealth and consumption over that pe-
riod) is negative at any point in time, it will also be negative at the end. Namely,
consumption only reduces wealth (if wealth before consumption is negative it
will remain negative thereafter), while the return process just enriches what
one had in the previous period (investment return only has an in�uence on the
absolute amount of wealth). Due to that, equation (25) can also be restated in
another form. Consider a random variable S(M), de�ned as

S(M) = S(M+N) �e�(YM+1+:::+YM+N ) =
MX
i=1

�i �eG(i)�
M+NX
i=M+1

�i �e�G(i); (26)

with G(i) de�ned as

G(i) = (Yi + :::+ YM ); i �M; (27)

G(i) = (YM+1 + :::+ Yi); i > M: (28)
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In simple terms S(M) gives the discounted value of the end-period wealth
S(M + N), where discounting is done with respect to the intermediate point
M . From equation (26) it is not di¢ cult to see that the probability of default
of our transformed random variable S(M) is equal to the default probability of
S(M + N); the result being obvious since a negative outcome will always be
transformed into a negative value

Pr(S(M) � 0) = Pr(S(M +N) � 0): (29)

Note that the transformed random S(M) has more desirable properties in terms
of dependency structure than S(M +N). In contrast to S(M +N) both parts
of S(M) (the investment and the consumption part) are independent of each
other. Since (26) is the di¤erence of two independent parts, with each part
being a sum of log-normally distributed dependent random variables, one can
successfully deploy the methodology presented in the previous Section to yield
an accurate comonotonic approximating sequence.

6 Solution methodology

6.1 Approximating procedure

In this Section I rely on the results of Section 4 to �nd an approximate analytical
expression for the distribution function of S(M)

S(M) =
MX
i=1

�i � eG(i) �
M+NX
i=M+1

�i � e�G(i): (30)

In deriving the conditioning random variable � I use the �rst-order Taylor ex-
pansion of expression (30)

� =

MX
i=1

�i � eE[Gi] �G(i) +
M+NX
i=M+1

�i � e�E[Gi] �G(i); (31)

where the equation (31) can also be rewritten in a more general form

� =
M+NX
i=1

i � Yi (�) ; (32)

with i equal to
5

i =
MX
k=1

�k � e�(�)�k; if i �M; (33)

i =
M+NX
k=M+1

�k � e��(�)�(k�M); if i > M:

5 In determing the coe¢ cients a similar approach has been used as in Dhaene et al. (2004b)
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With this choice of conditioning random variable the conditioning Taylor ap-
proximating sequence can be expressed as6

E(S(M) j �) =
MX
i=1

�i � ei (�(�)�
1
2 r

2
i (�) �

2(�))+ri(�)
p
i �(�) ��1(U)� (34)

�
M+NX
i=M+1

�i � e�(i� M)(�(�)+(1� 1
2 r

2
i (�))) �

2(�)�ri(�)
p
(i� M) �(�) ��1(U);

with ri given by

ri =

PM
k=i k

p
i �
qPM+N

i=1 2i

; if i �M; (35)

ri =

Pi
k=M+1 kp

(i�M) �
qPM+N

i=1 2i

; if i > M

and i de�ned as in (33).
Note that due to the fact that all ri are positive (or non-negative) the dif-

ference of sums in (34) is strictly increasing in ��1(U) and thus comonotonic.
Hence, the quantiles can be given by

Qp(E(S(M) j �)) =
MX
i=1

�i � ei (�(�)�
1
2 r

2
i (�) �

2(�))+ri(�)
p
i �(�) ��1(p)� (36)

�
M+NX
i=M+1

�i � e�(i� M)(�(�)+(1� 1
2 r

2
i (�))) �

2(�)�ri(�)
p
(i� M) �(�) ��1(p):

Recall, again that the goal when selecting the optimal asset allocation is to
minimise the default probability over the whole investment period, which is
equal to the default probability of the transformed random variable S(M). The
optimality is thus achieved for a strategy that minimises the probability of
negative S(M)

p = min
�
FS(M)(0): (37)

Observe that no analytical expression exists for either the distribution function
or the quantiles of S(M). Thus I approximate the default probability of S(M)
with the default probability of the conditioning Taylor sequence E(S(M) j �)

papp = min
�
FE(S(M)j�)(0): (38)

6Exact form of the approximating sequence is obtained by considering E [Yi] = �i � 1
2
�i
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The default probability in (38) can be obtained by solving the following equation

MX
i=1

�i � ei (�(�)�
1
2 r

2
i (�) �

2(�))+ri(�)
p
i �(�) ��1(p)� (39)

�
M+NX
i=M+1

�i � e�(i� M)(�(�)+(1� 1
2 r

2
i (�))) �

2(�)�ri(�)
p
(i� M) �(�) ��1(p) = 0:

Since (39) is increasing in ��1(p) the solution to the equation is unique and the
exact value can be obtained by using one of the iterative methods like Newton-
Raphson.

6.2 Restricting the set of solutions

In the previous Section I showed how conditioning Taylor approximation can be
deployed to yield an analytical description of the quantiles of the distribution
function of S(M). Although this partially solves the problem of multidimen-
sionality, it still does not allow one to obtain a solution in realistic time. A
larger part of the multidimensionality7 curse is namely related to numerous
assets which result in an almost �in�nite�number of combinations one has to
consider when searching for the optimal asset mix. Thus it makes sense to prove
that the solution to the problem (37) can be found in a subset of the set of all
possible solutions.
Recall that the e¢ cient frontier is de�ned as the solution to the following

minimisation problem (see Markowitz (1952))

min
~�
�(~�) subject to �(~�) = �: (40)

Alternatively, the e¢ cient frontier can also be de�ned as a maximisation
problem by interchanging the variables in equation (40)

max
~�
�(~�) subject to �(~�) = �: (41)

It is not hard to show (by means of a Lagrange optimisation) that under the
assumption of positive de�nite variance-covariance matrix � and allowed short
selling a unique solutions to the problem in (41) can be obtained

�(~��) = r + �

q
(~�� r1)T ���1 � (~�� r1) (42)

and

~�� = �
��1 � (~�� r1)

(~�� r1) ���1 � (~�� r1)
; (43)

7The multidimensionality curse relates to the problem of numerous combinations of possible
portfolios of assets one has to consider and the problem of determination of the distribution
function of a sum of dependent log-normal random variables.
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where ~�� corresponds to the optimal investment strategy giving rise to the
maximum in (41).
Observe that (43) can be rewritten as

~�� =
�(~��)� r
�(~�t)� r

� ~�t; (44)

where ~�t denotes the tangency portfolio. Thus the mean-variance optimizing
investors di¤er only with respect to the percentage of assets they place in the
tangency portfolio8 .

Theorem 4 The solution to the problem (37) is to be found on the Capital
Market Line (CML).

Proof. Observe that the return over an investment horizon of i periods denoted
Z(i) can be expressed in terms of yearly returns Yi(~�)

Z(i) =
iX

k=1

Yk: (45)

Since each yearly return can be written as

Yk = �+ ��
�1(Uk);

with Ui an independent (0; 1) uniform random variable, I can rewrite equation
(45) to get

Z(i) = i�+ �
iX

k=1

��1(Uk):

It is easy to show that if one wants to maximise a return over any investment
horizon it is optimal to choose a portfolio from CML. For any given � the portfo-
lios from CML will have the highest expected drift � and will thus stochastically
dominate all other portfolio strategies

Zi
~��CML

�st Zi
~�=2CML

:

Therefore it is also optimal to select an investment strategy from CML if one
wants to maximise the future value of a series of periodic investments �i

S+ =
NX
i=1

�ie
i�e��

�1(Ui)

or to minimise the present value of a series of periodic withdrawals �i

S� =
NX
i=1

�ie
�i�e��

�1(Vi):

8See Dhaene et. al (2005) for details.
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Figure 2: Default probability as a function of investment strategy (� = 1:3):

Since S(M) is just the di¤erence of the future wealth earned by periodic invest-
ments and the present value of future obligations

S(M) = S+ � S� =
MX
i=1

�i � eG(i) �
M+NX
i=M+1

�i � e�G(i); (46)

our result follows.

7 Numerical illustration

In this Section I explicitly work out the general pension problem discussed in
Section 5. By comparing the results of the conditioning Taylor approximation
and Monte Carlo simulation I test the quality of my approximate approach.
For the purpose of numerical illustration the following set of parameters9 was
chosen: M = N = 20, �1 = :::: = �20 = 1; �1 = ::: = �20 = �1:3, risk-free rate
rf = 0:014, drift of the stock market index �m = 0:073 and standard deviation
�m = 0:16:
Figure 2 presents the relationship between the probability of default (y axis)

and the investment strategy (x axis). The investment strategy is characterised

9A similiar choice of parameters can be found in Campbell et al. (2003) and Dhaene
(2004b).
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Figure 3: Default probability as a function of investment strategy (� = 1:4):

by an allocation pattern between risky and risk-free assets (in the �gure the
percentage of investment in a market index is given). As one can see from
the �gure, the conditioning Taylor approach (solid line) gives an excellent �t
against the simulated probability of default (solid triangles). The maximum
relative di¤erence between the default probability calculated from conditioning
Taylor and the default probability from the MC simulation is 1.2%. As the
�gure illustrates, the deviation between the simulated and approximated results
is in no way restrictive; both the optimal investment strategy and the level
of default probability almost coincide for the two procedures. The optimal
investment strategy (characterised by an allocation between the risky and risk-
free investment, where the second value represents the fraction of wealth invested
in risky assets) obtained by means of the conditioning Taylor approximation is
equal to �app = (86:6%; 13:4%)T with the corresponding default probability
Fapp(0) = 0:0262. These values closely resemble those obtained from simulation
�MC = (86:6%; 13:4%)

T with FMC(0) = 0:0265.
In the second numerical example, I increase the withdrawal rate � (-1.4

instead of -1.3) in order to examine the e¤ect of a change on the optimal as-
set mix and the default probability. As one can expect the default probabil-
ity increases; in the case of the conditioning Taylor approximation the default
probability is equal to Fapp(0) = 0:052 whereas the simulated value is equal
to FMC(0) = 0:0525. This should be measured against the shift in the optimal
investment strategy �app = (50:6%; 49:4%)T for the conditioning Taylor approx-
imation versus �MC = (50%; 50%)

T in the case of the Monte Carlo simulation.
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Again, the deviation between the simulated and the approximated values is rel-
atively small (1%) and in no way in�uences the choice of the optimal investment
strategy.
The results of both numerical illustrations indicate that changing the with-

drawal rate in�uences both the optimal investment strategy as well as the de-
fault probability. The default probability increases with the annuity, whereas
the asset mix becomes riskier with increasing annuity. The resulting shift of
an investment strategy leaning towards risky assets is at all not surprising and
can be well explained by considering the interplay between default probability
and the amount of obligations (annuities). Namely, when the annuity level gets
too large for the risk-free investment strategy to provide a 100% guarantee, the
bene�ts of going more towards risky investments become more and more pro-
nounced. Note that once the annuity is larger than the border annuity, which
is de�ned as the largest amount of withdrawals for which the default proba-
bility is still zero, then the default probability of a risk-free investment will be
di¤erent from zero, actually 100% (the result of the risk-free investment strat-
egy is always dichotomous) and the bene�ts of riskier strategies become more
pronounced. With increasing annuities the minimal default probability inher-
ently increases and the optimum can be achieved for strategies with increasingly
higher proportions of risky assets.

8 Conclusion

I have searched for the optimal multi-period investment strategy of an in-
vestor whose accumulation phase lasting M years is followed by an annuisa-
tion/consumption period of N years. When choosing the optimal asset mix,
I restricted the analysis to the class of constant mix dynamically rebalanced
strategies, with the optimisation criterion set to the probability of default.
In solving the model I rely on the technique of conditioning Taylor approxi-

mation. I have shown by means of a numerical illustration that the solutions of
my approximate procedure closely relate to the results of a Monte Carlo simu-
lation, with the maximum relative deviation between the approximated results
and those obtained by Monte Carlo being negligible (1%).
As the results indicate, increasing the withdrawal rate (annuity) and increas-

ing the investment horizon increases the allocation to risky assets. Namely, when
the withdrawal rate becomes too large for the risk-free investment strategy to
provide a 100% guarantee, the bene�ts of moving more towards a risky invest-
ment become more and more pronounced.
My work can lead to several possible generalisations. Perhaps the most

important obstacle when analysing the results of this model is the problem of
in�nite transaction cost due to continuous rebalancing. Although limiting in
some sense, this problem can be well accounted for with a slight modi�cation
of the existing methodology (Ahµcan (2005b)). A less serious problem is linked
to the assumption of log-normal returns. As I model market yearly returns
this assumption is not far from reality. But if one were to model single-asset

18



returns (or index returns over shorter time horizons) then the assumption of log-
normal returns is no longer valid and one is bound to consider other alternatives,
such as stable non-Gaussian distribution functions. Another possible extension
linked to the assumption of independent yearly returns is to include some sort of
dependence; as some authors indicate the yearly returns show slight dependence
in the form of a mean reversion (see Fama and French (1988), Bessembinder et
al. (1995), Balvers et al. (2000), Campbell et al. (2003), Munk et al. (2004)
and Gropp (2004) for more details).
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