
A Computer Implementation of the Push-and-Pull
Algorithm and Its Computational Comparison With

LP Simplex method

H. Arshama, G. Cimpermanb, N. Damijc, T. Damijc, and J. Gradd

aUniversity of Baltimore, MIS Division, Baltimore, Maryland 21201, USA
harsham@ubmail.ubalt.edu

b ”Petrol Company ”, 1000 Ljubljana, Slovenia
cUniversity of Ljubljana, Faculty of Economics, 1000 Ljubljana, Slovenia

talib.damij@uni-lj.si
dUniversity of Ljubljana, School of Public Administration, 1000

Ljubljana, Slovenia
janez.grad@vus.uni-lj.si

Abstract: The simplex algorithm requires artificial variables for solving
linear programs, which lack primal feasibility at the origin point. We
present a new general-purpose solution algorithm, called Push-and-Pull,
which obviates the use of artificial variables. The algorithm consists of
preliminaries for setting up the initialization followed by two main phases.
The Push Phase develops a basic variable set (BVS) which may or may
not be feasible. Unlike simplex and dual simplex, this approach starts with
an incomplete BVS initially, and then variables are brought into the basis
one by one. If the BVS is complete, but the optimality condition is not
satisfied, then Push Phase pushes until this condition is satisfied, using
the rules similar to the ordinary simplex. Since the proposed strategic
solution process pushes towards an optimal solution, it may generate an
infeasible BVS. The Pull Phase pulls the solution back to feasibility using
pivoting rules similar to the dual simplex method. All phases use the usual
Gauss pivoting row operation and it is shown to terminate successfully or
indicates unboundedness or infeasibility of the problem. A computer imple-
mentation, which enables the user to run either Push-and-Pull or ordinary

simplex algorithms, is provided. The fully coded version of the algorithm
is available from the authors upon request. A comparison analysis to test
the efficiency of Push-and-Pull algorithm comparing to ordinary simplex is
accomplished. Illustrative numerical examples are also presented.

AMS Subj. Classification:
90C05: Linear programming
90B: Operations research and management science
Key Words and Phrases: Linear Programming; Basic variable set; Ar-
tifical variable; Advanced basis; Simplex tableau reduction.

1. Introduction

Since the creation of the simplex solution algorithm for linear programs
(LP) problems in 1947 by Dantzig [8], this topic has enjoyed a considerable
and growing interest by researchers and students of many fields. However,
experience shows there are still computational difficulties in solving LP
problems in which some constraints are in (≥) form with the right-hand
side (RHS) non-negative, or in (=) form.

One version of the simplex known as the two-phase method introduces
an artificial objective function, which is the sum of artificial variables,
while the other version adds the penalty terms which is the sum of artificial
variables with very large positive coefficients. The latter approach is known
as the Big-M method.

Most practical LP problems such as Transportation Problem [12], and
the Finite Element modeling [13] have many equality, and greater-than-
or equal constraints. There have been some attempts to avoid the use
of artificial variables in the context of simplex method. Arsham [3] uses
a greedy method, which is applicable to small size problem. Paparrizos
[14] introduced an algorithm to avoid artificial variables through a tedious
evaluation of a series of extraneous objective functions besides the original
objective function. At each iteration this algorithm must check both op-
timality and feasibility conditions simultaneously. An algebraic method is
also introduced in [2] which is based on combinatorial method of finding
all basic solutions even those which are not feasible. Recently noniterative
methods [9, 12], are proposed which belong to heuristic family algorithms.

The aim of this paper is to test the efficiency of an algorithm to solve
LP problems called Push-and-Pull, developed by Arsham [3], comparing
to a well-known and widely used ordinary simplex. For this purpose, a
comparison analysis between the two mentioned algorithms has been ac-

complished. The result of this analysis shows that Push-and-Pull algorithm
is more effective and faster than ordinary simplex.

Push-and-Pull is a new general solution algorithm, which is easy to un-
derstand, is free from any extraneous artificial variables, artificial objective
function, extraneous objective functions, or artificial constraint. The algo-
rithm consists of two phases. In phase I a feasible segment of the boundary
hyper–using rules similar to the ordinary simplex search plane (a face of
feasible region or an intersection of several faces). Each successive iteration
augments BVS (which is initially empty) by including another hyper-plane
and/or shifting an existing one parallel to itself toward the feasible region
(reducing its slack/surplus value), until the BVS specifies a feasible vertex.
In this phase the movements are on faces of the feasible region rather than
from a vertex to a vertices. This phase (if needed) is moving from this
vertex to a vertex that satisfied the optimality condition. If the obtained
vertex is not feasible, then the second phase generates an optimal solution
(if exists), using the rule similar to the dual simplex method.

The inclusion of the ordinary simplex, and the dual simplex methods
as part of the proposed algorithm unifies both methods by first augment-
ing the BVS, which is (partially) empty initially, rather than replacing
variables.

The Push-and-Pull algorithm is motivated by the fact that, in the case
of (=) and (≥) constraints the simple method has to iterate through many
infeasible verities to reach the optimal vertex. Moreover, it is well known
that the initial basic solution by the simplex method could be far away from
the optimal solution [15]. Therefore, the Push-and-Pull algorithm starts
with a BVS which is completely empty, then we fill it up with ”good”
variables i.e. having large Cj while maintaining feasibility. As a result, the
simplex phase has a warm-start which is a vertex in the neighborhood of
optimal vertex.

The algorithm working space is the space of the original variables with
a nice geometric interpretation of its strategic process. Our goal is to
obviate the use of artificial variables, and unification with the ordinary
simplex with the dual simplex in a most natural and efficient manner. The
proposed approach has smaller tableau to work with since there are no
artificial columns, penalty terms in the objective function, and also the
row operations are performed directly on CJ ’s and there is no need for any
extra computation to generate an extraneous row Cj − Zj.

In Section 2, we present the strategic process of the new solution algo-
rithm with the proof that it converges successfully if an optimal solution
exists. In Section 3, we present a computer implementation system, which

enables the user to solve linear programming problems using either Push-
and-Pull or ordinary simplex algorithms. The system provides a detailed
analysis for each tested problem and also a comparison analysis if both
algorithms are used. Applying the computer implementation system to a
numerical example is given in the next section. The fully coded version
of the algorithm is available from the authors upon request. In Section
5, we present a comparison analysis between the Push-and-Pull and ordi-
nary simplex algorithms using 15 examples. The last section contains some
useful remarks.

2. The new solution algorithm

Consider any LP problem in the following standard form:

Max
n∑

j=1

CjXj

subject to

AX(≤, =,≥) b ; X ≥ 0 and b ≥ 0 (1)

A is the respective matrix of constraint coefficients, and b is the respective
RHS vectors (all with appropriate dimensions). This LP problem can be
rewritten in the form

Max CX

subject to

n∑
j=1

Xj pj = p0 ; Xj ≥ 0 . (2)

Without loss of generality we assume all the RHS elements are non-negative.
We will not deal with the trivial cases such as when A = 0, (no constraints)
or b = 0 (all boundaries pass through the origin point). The customary
notation is used: Cj for the objective function coefficients (known as cost
coefficients), and X = {Xj} for the decision vector. Throughout this paper
the word constraints means any constraint other than the non-negativity
conditions. To arrive at this standard form some of the following prelimi-
naries may be necessary.

Preliminaries:
To start the algorithm the LP problem must be converted into the follow-
ing standard form:

(a) The problem must be a maximization problem: If the problem
is a minimization problem convert it to maximization by multiplying the
objective function by -1. By this operation the optimal solution remains
the same, then use the original objective function to get the optimal value
by substituting the optimal solution.
(b) RHS must be non-negative: Any negative RHS can be converted
by multiplying it by -1 and changing its direction if it is an inequality,
optimal solution remains unchanged. To avoid the occurrence of a possi-
ble degeneracy, convert all inequality constraints with RHS = 0 into 0 by
multiplying each one of them by -1.
(c) All variables must be non-negative: Convert any unrestricted
variable Xj to two non-negative variables by substituting y − Xj for ev-
ery Xj everywhere. This increases the dimensionality of the problem by
one only (introduce one y variable) irrespective of how many variables are
unrestricted. If there are any equality constraints, one may eliminate the
unrestricted variable(s) by using these equality constraints. This reduces
dimensionality in both number of constraints as well as number of variables.
If there are no unrestricted variables do remove the equality constraints by
substitution, this may create infeasibility. If any Xj variable is restricted
to be non-positive, substitute −Xj for Xj everywhere.

It is assumed that after adding slack and surplus variables to resource
constraints (i.e.,≤) and production constraints (i.e.,≥) respectively, the
matrix of coefficients is a full row rank matrix (having no redundant con-
straint) with m rows and n columns. Note that if all elements in any row
in any simplex tableau are zero, we have one of two special cases. If the
RHS element is non-zero then the problem is infeasible. If the RHS is zero
this row represents a redundant constraint. Delete this row and proceed.

2.1 Strategic Process for the New Solution Algorithm

Solving LP problems in which some constraints are in (≥) form, with the
right-hand side (RHS) non-negative, or in (=) form, has been difficult
since the beginning of LP (see, e.g.,[7, 8, 16]). One version of the simplex
method, known as the two-phase method, introduces an artificial objective
function, which is the sum of the artificial variables. The other version is
the Big-M method [7, 15] which adds a penalty term, which is the sum
of artificial variables with very large positive coefficients. Using the dual
simplex method has its own difficulties. For example, when some coeffi-
cients in the objective function are not dual feasible, one must introduce
an artificial constraint. Also handling (=) constraints is very tedious.

The algorithm consists of preliminaries for setting up the initialization
followed by two main phases: Push and Pull phases. The Push Phase
develops a basic variable set (BVS) which may or may not be feasible.
Unlike simplex and dual simplex, this approach starts with an incomplete
BVS initially, and then variables are brought into the basis one by one. If
this process can not generate a complete BVS or the BVS is complete, but
the optimality condition is not satisfied, then Push Phase pushes until this
condition is satisfied. This strategy pushes towards an optimal solution.
Since some solutions generated may be infeasible, the next step, if needed,
the Pull Phase pulls the solution back to feasibility. The Push Phase
satisfies the optimality condition, and the Pull Phase obtains a feasible
and optimal basis. All phases use the usual Gauss pivoting row operation.

The initial tableau may be empty, partially empty, or contain a full
basic variable set (BVS). The proposed scheme consists of the following
two strategic phases:
Push Phase: Fill-up the BVS completely by pushing it toward the optimal
corner point, while trying to maintain feasibility. If the BVS is complete,
but the optimality condition is not satisfied, then push phase continues
until this condition is satisfied.
Pull Phase: If pushed too far in Phase I, pull back toward the optimal
corner point (if any). If the BVS is complete, and the optimality condition
is satisfied but infeasible, then pull back to the optimal corner point; i.e.,
a dual simplex approach.

Not all LP problems must go through the Push and Pull sequence of
steps, as shown in the numerical examples.

To start the algorithm the LP problem must be converted into the
following standard form:

1. Must be a maximization problem

2. RHS must be non-negative

3. All variables must be non-negative

4. Convert all inequality constraints (except the non-negativity condi-
tions) into equalities by introducing slack/surplus variables.

The following two phases describe how the algorithm works. It termi-
nates successfully for any type of LP problems since there is no loop-back
between the phases.

The Push Phase:
Step 1. By introducing slack or surplus variables convert all inequalities
(except non-negativity) constraints into equalities.

The coefficient matrix must have full row rank, since otherwise either no
solution exists or there are redundant equations.
Step 2. Construct the initial tableau containing all slack variables as basic
variables.
Step 3. Generate a complete basic variable set (BVS), not necessarily
feasible, as follows:

1. Incoming variable is Xj with the largest Cj (the coefficient of Xj in
the objective function, it could be negative).

2. Choose the smallest non-negative C/R if possible. If there are alter-
natives, break the ties arbitrarily.

3. If the smallest non-negative C/R is in already occupied BV row then
choose the next largest Xj not used yet within the current iteration,
and go to (1).
If the BVS is complete or all possible incoming variables Xj have
been already used then continue with step 4, otherwise generate the
next tableau and go to (1).

Step 4. If all Cj ≤ 0 then continue with step 5.

1. Identify incoming variable (having largest positive Cj).
2. Identify outgoing variable (with the smallest non-negative C/R). If

more than one, choose any one, this may be the sign of degeneracy.
If Step 4 fails, then the solution is unbounded. However, to prevent
a false sign for the unbound solution, introduce a new constraint∑

Xi + S = M to the curent tableau, with S as a basic variable.
Where M is an unspecified sufficiently, large positive number, and
Xi’s are variables with a positive Cj in the current tableau. Enter
the variable with largest Cj and exit S. Generate the next tableau,
(this makes all Cj ≤ 0), then go to Step 5.

Step 5. If all RHS ≥ 0 and all Cj ≤ 0 in the current tableau then this
is the optimal solution, find out all multiple solutions if they exist (the
necessary condition is that the number of Cj = 0 is larger than the size of
the BVS). If some Cj > 0, then go to Step 4, otherwise continue with the
Pull phase.

The Pull Phase:
Step 6. Use the dual simplex pivoting rules to identify the outgoing variable
(smallest RHS). Identify the incoming variable having negative coefficient
in the pivot row in the current tableau, if there are alternatives choose the
one with the largest positive row ratio (R/R), [that is, a new row with

elements: row Cj/pivot row]; if otherwise generate the next tableau and
go to Step 5. If Step 6 fails, then the problem is infeasible. Stop.

For numerical examples see [6].

2.2 The theoretical foundation of the proposed solution
algorithm

One of the advantages of this simplex-based method over another meth-
ods is that final tableau generated by these algorithms contains all of the
information needed to perform the LP sensitivity analysis. Moreover, the
proposed algorithm operates in the space of the original variables and has a
geometric interpretation of its strategic process. The geometric interpreta-
tion of the algorithm is interesting when compared to the geometry behind
the ordinary simplex method. The simplex method is a vertex-searching
method. It starts at the origin, which is far away from the optimal solu-
tion. It then moves along the intersection of the boundary hyper-planes of
the constraints, hopping from one vertex to the neighboring vertex, until
an optimal vertex is reached in two phases. It requires adding artificial
variables since it lacks feasibility at the origin. In the first phase, starting
at the origin, the simplex hops from one vertex to the next vertex to reach
a feasible one. Upon reaching a feasible vertex; i.e., upon removal of all
artificial variables from the basis, the simplex moves along the edge of the
feasible region to reach an optimal vertex, improving the objective value
in the process. Hence, the first phase of simplex method tries to reach fea-
sibility, and the second phase of simplex method strives for optimality. In
contrast, the proposed algorithm strives to create a full basic variable set
(BVS); i.e., the intersection of m constraint hyper-planes, which provides
a vertex. The initialization phase provides the starting segment of a few
intersecting hyper-planes and yields an initial BVS with some open rows.
The algorithmic strategic process is to arrive at the feasible part of the
boundary of the feasible region. In the Push Phase, the algorithm pushes
towards an optimal vertex, unlike the simplex, which only strives, for a
feasible vertex. Occupying an open row means arriving on the face of the
hyper-plane of that constraint. The Push Phase iterations augment the
BVS by bringing-in another hyper-plane in the current intersection. By
restricting incoming variables to open rows only, this phase ensures move-
ment in the space of intersection of hyper-planes selected in the initializa-
tion phase only until another hyper-plane is hit. Recall that no replacement
of variables is done in this phase. At each iteration the dimensionally of
the working region is reduced until the BVS is filled, indicating a vertex.

This phase is free from pivotal degeneracy. The selection of an incoming
variable with the largest Cj helps push toward an optimal vertex. As a
result, the next phase starts with a vertex.

At the end of the Push-Further phase the BVS is complete, indicating
a vertex which is in the neighborhood of an optimal vertex. If feasible,
this is an optimal solution. If this basic solution is not feasible, it indicates
that the push has been excessive. Note that, in contrast to the first phase
of the simplex, this infeasible vertex is on the other side of the optimal
vertex. Like the dual simplex, now the Pull Phase moves from vertex to
vertex to retrieve feasibility while maintaining optimality; it is free from
pivotal degeneracy since it removes any negative, non-zero RHS elements.

Theorem 1. By following Steps 3(1) and 3(2) a complete BV set can
always be generated which may not be feasible.

Proof. Proof of the first part follows by contradiction from the fact that
there are no redundant constraints. The second part indicates that
by pushing toward the optimal corner point we may have passed it.
Note that if all elements in any row are zero, we have one of two
special cases. If the RHS element is non-zero then the problem is
infeasible. If the RHS is zero this row represents a redundant con-
straint. Delete this row and proceed.

Theorem 2. The Pull Phase and the initial part of the Push Phase are
free from pivotal degeneracy that may cause cycling.

Proof. It is well known that whenever a RHS element is zero in any sim-
plex tableau (except the final tableau), the subsequent iteration may
be pivotal degenerate when applying the ordinary simplex method,
which may cause cycling. In the Push phase, we do not replace any
variables. Rather, we expand the basic variable set (BVS) by bring-
ing in new variables to the open rows marked with ” ? ”. The Pull
Phase uses the customary dual simplex rule to determine what vari-
able goes out. This phase is also free from pivotal degeneracy since
its aim is to replace any negative, non- zero RHS entries. Unlike
the usual simplex algorithms, the proposed solution algorithm is al-
most free from degeneracy. The initial phase brings variables in for
the BVS, and the last phase uses the customary dual simplex, thus
avoiding any degeneracy which may produce cycling. When the BVS
is complete, however, degeneracy may occur using the usual simplex
rule. If such a rare case occurs, then the algorithm calls for Degener-
acy Subroutine as described in the computer implementation section.

The fully coded version of the algorithm is available from the authors
upon request.

Theorem 3. The solution algorithm terminates successfully in a finite
number of iterations.

Proof. The proposed algorithm converges successfully since the path
through the Push, Push-Further and Pull Phases does not contain
any loops. Therefore, it suffices to show that each phase of the algo-
rithm terminates successfully. The Set-up Phase uses the structure
of the problem to fill-up the BVS as much as possible without requir-
ing GJP iterations. The initial part of the Push Phase constructs a
complete BVS. The number of iterations is finite since the size of the
BVS is finite. Push Phase uses the usual simplex rule. At the end
of this phase, a basic solution exists that may not be feasible. The
Pull Phase terminates successfully by the well-known theory of dual
simplex.

3. Computer implementation system

In this section we represent a computer implementation system called Six-
Pap, which is developed to enable the reader to run one or both algorithms,
Push-and-Pull and ordinary simplex, for solving different linear program-
ming problems. The fully coded version of the algorithm is available from
the authors upon request. The system also creates a comparison analysis
between the two algorithms. The system was designed and built with MS
Visual Studio 6.0 using MS Visual Basic.

The system is object oriented, its functionality is based on the object
structure, that consists of main functional objects, accompanied by use-
ful supporting objects. The system is event-driven: the objects mostly
communicate amongst themselves as well as the graphical user interface
elements (user controls); thus by raising and watching for certain events.
Objects and their structure are explained in detail in Section 4.

User can communicate with the system through a graphical user in-
terface. It is a multi window interface consisting of three main windows
with their own functional purpose and elements. Most of elements are User
Controls: controls designed to fit the exact problem or deliver the exact
functionality. That enhances the usability of the graphical user interface,
and accompanied with appliance of error management using error han-
dling routines, makes the system more stable and robust. User interface is
explained in detail in Section 5.

There is an on-line help integrated in the system, which can be easily
accessed and can provide useful information to the user about the system
and how to use it.

3.1 Data organization and managenent

Data is organized in three groups: definition data, result summary data
and result detailed data.

The definition and result summary data for each linear programming
problem are stored in one plain text file. The first part of the file contains
general data of the problem such as name, source and some comments. The
second part contains data of the objective function, number of constraints,
number of variables, equations and inequations and right hand side values.

The third and/or fourth parts of the file are created when one or both
algorithms were executed. They represent the result summary data. The
data consists of the algorithm’s name, the status of the result, optimal
value of objective function (if exists), basic variable set BVS values, objec-
tive function variables x(j) values, degeneracy indicator, different efficiency
counters (number of iterations, additions / subtractions, multiplications /
divisions, loops and decisions), time stamp and the result detailed file name.

Detailed result shows a step-by-step algorithm execution by recording
relevant data like basic variable sets, tableaus, outgoing, incoming vari-
ables and comments explaining the previous and/or next action for each
iteration.

All data files and data operations are handled by a subsystem called the
Repository. User communicates with the Repository subsystem through
the graphical user interface, especially through the Repository window
which is explained in detailed later. That means that users need not wor-
rying about data handling operations, data structure or file locations - the
Repository subsystem does all that, including the creation of all required
subfolders if they do not exist already.

3.2 Implementation of algorithms

The two algorithms are implemented in separate modules (MS Visual
Studio, MS Visual Basic). There are actually three modules. The first two
main modules implement iterative loops, one for Push-and-Pull algorithm
and the other for ordinary simplex algorithm. The third is a supporting
module with Gauss pivoting row operations.

The system uses algorithm implementation modules by calling a single
module procedure (subroutine), which acts as the module entry point. The

parameter passed is a reference to the problem object, where the results
are stored and returned to the system.

The advantage of the modular implementation lies in the possibility
of using the DLL (Dynamic Link Library) technology. With little system
redesign, user could write their own implementations and compile them
to a DLL. That would enable them to test, analyze and use their own im-
plementations without needing to apply any changes to the SixPap system.

3.3 Object structure

3.3.1. Main objects

A group of main objects is used to handle linear programming problems
as a whole, from problem definition to the results given by each (Push-and-
Pull as well as ordinary simplex) algorithm. Classes representing those
objects are: Problem, Problem Definition and Problem Result.

The Problem class is a parent class for Problem Definition and Problem
Result classes and represents a single problem on a higher level. It con-
sists of methods that support operations like creating new problem object
structure and its initiation, methods for working with reading and writing
data from files as well as methods that cause different ways of displaying a
problem. The class through its properties holds information about a prob-
lem object structure, by maintaining references to child objects, and links
to user interface, by maintaining references to user controls that handle
different ways of displaying a problem data.

The Problem Definition class is a child of the Problem Class. It handles
problem definition data in detail. Its methods support operations like read-
ing and writing the definition-part of problem data to file (in collaboration
with its parent objects r/w methods) as well as definition data editing with
data validation. Contained information consists of values defining a linear
problem.

The Problem Result class is also a child of the Problem Class. It has two
instances, for each linear programming algorithm one. It handles problem
result data in detail through methods that support read/write operations
as well as different display operations for the result-part data. The infor-
mation the class keeps consists of algorithm result data - both summary
and detailed.

3.3.2. Supporting Objects

Functionality of the system is enhanced by useful supporting objects
such as various counters, sorted lists and result detailed file handlers rep-
resented by Counters, Output Detail File, Sorted List and Item in Sorted
List Class.

The Counters Class is a part of each Result Class. Its function is to han-
dle and store analytic-purpose counters: iteration, addition / subtraction,
multiplication / division, loop and decision count.

The Output Detail File Class is a part of each Result Class. Its func-
tion is to handle write-to-file operations during the linear programming
algorithm run. Output is a result detailed file.

The Sorted List Class is involved with Push-and-Pull algorithm execu-
tion. It is a simple class representing a sorted list of elements. Its role in
the System is to maintain and handle the Cj values as a sorted list. The
elements of the list consist of the Item in Sorted List Class objects.

The Item in Sorted List Class is a part of the Sorted List Class. It
represents a single element with its value and reference to the next element
in the list.

3.4 User interface

The SixPap User Interface is a multi-document interface, using an MDI
Form (the Main Window) as a container for three functional windows:
the Repository Window, the Single Problem Window and the Analysis
Window, as can be seen on Figure 1. All the features, mentioned in the
following text, are explained in detail in the SixPap on-line help file.

Figure 1: The SixPap User Interface

3.4.1. Main Window

Figure 2 shows the Main Window with its elements.

Figure 2: The Main Window

3.4.2. Repository Window

The Repository Window serves as an interface between the user and the
Repository sub-system, which, as mentioned above, handles all data storage
operations. It has a problem-level approach, meaning, that the main tasks
concern a problem as a whole. Those tasks are selecting, opening, creating
new, renaming, duplicating, adding to analysis, and deleting problems.

As is shown in Figure 3, the Repository Window, beside a standard
window bar, consists of three main elements: the Repository Menu, the
Trash Bin and the Problems Repository List.

The Repository Menu is a MyActiveLabels user-control with menu op-
tions that execute the Repository tasks.

The Trash Bin is a MyFileListView user control. It acts as a container
for deleted problems. With some Repository Menu options they can be-
come permanently deleted or can be restored to the Problem Repository.

The Problem Repository is a MyFileListView user control, too. It is
the main Repository display element, showing the collection of existing
problems. With other Repository Window elements it takes care of the
execution of the Repository sub-system tasks.

Figure 3: The Repository Window

3.4.3. Analysis Window

The Analysis Window is created to work with multiple problems. As
can be seen in Figure 4, it consists of two main elements (beside a standard
window bar, stating the number of problems included in analysis): the
Analysis Window Menu and the Analysis Window Problem List.

The Analysis Menu consists of two User-Controls: a MyActiveLabels
and a MyCheckLabels controls. The MyCheckLabels part enables user
to select one or both algorithms to be executed (or results cleared). The
MyActiveLabels part takes care of carrying out the Analysis Window tasks,
such as clearing the Problem List, removing a single problem from the
Problem List, exporting current Problem List as a Tab-delimited text file
(it is suitable for further analyzing with e.g. MS Excel), resetting results
and executing (selected) methods.

The Problem List is based on MyGrid user-control. Its purpose is to
display multiple problems with their definitions and result summaries for
each linear programming algorithm, in a single table. That helps the user
to find and understand some interesting behaviors of algorithms execution.
The Problem List fields are explained in detail in the SixPap on-line help.

Figure 4: The Analysis Window

3.4.4. Single Problem Window

The purpose of the Single Problem Window is to help the user to work
with single (selected) problem and its details more easily.

The Single Problem Window consists, as is shown in Figure 5, of four
main elements (beside a standard window bar with the name of currently
opened problem): the Single Problem Menu, the Definition, Result Sum-
mary and Result Details area.

The Single Problem Menu helps executing tasks, such as saving and
printing selected problem, and executing and resetting results for selected
algorithms. It consists of a MyActiveLabels and MyCheckLabels user-
controls.

The problem general variables area is located immediately under the
menu. It consists of six general variables, defining the linear programming
problem: the objective function, the number of variables, the number of
constraints, the problem name and two comment variables (the source of
the problem and a general comment the user can give to the problem). All
those variables can be edited, with exception of the problem name.

The Definition tab contains the Problem Definition Tableau. It is based
on a MyGrid user-control, and displays the problem definition in detail.
The Tableau can be easily edited.

The Result Summary tab contains the Result Summary Table (it is also
based on a MyGrid user-control) where the characteristic result values for
one or both algorithm are displayed. There is also a column added, that
displays a calculated difference between algorithm results.

The Result Details tab contains a MyRichTextBox user-control. This
control shows the contents of both algorithm detail files (empty, if it does
not exists) for currently opened single problem.

Figure 5: The Single Problem Window

3.4.5. User controls

Beside standard Windows controls, the user interface includes a set of
custom made controls - user controls - such as MyActiveLabels, MyCheck-
Labels, MyFileListView, MyGrid and MyRichTextBox. They contribute to
system functionality and make the system construction more transparent

MyActiveLabels user control acts as a command menu. It is based on
an array of labels, which are sensitive to the mouse movement (text colour
changes, when mouse cursor moves over) and reacts to clicking. When a
label is clicked it activates an event which can be treated as a command.
Array of labels can be displayed in vertical or horizontal direction.

MyCheckLabels user control acts as a check boxed menu with selectable
options. It is based on an array of labels, which are sensitive to the mouse

movement (text colour changes, when mouse cursor moves over) and react
to clicking. When a label (or a box in front of it) is clicked the box in front
of it toggles between clear and ticked. A label has a property which holds
a selection value (True or False).

MyFileListView user control is based on standard MS Windows list
view control. It shows names (without extensions) of files that exist in a
selected folder. This control allows standard Multi Selection.

MyFileListView also allows label editing by two consecutive clicks on
item if CanEdit property is set to True. If not canceled, after editing the
control raises an event notifying that item name has been edited.

MyGrid user control is a table-like control, based on MSFlexGrid ex-
tended with the following functionality: Selecting And Checking, Hiding /
Showing columns and Editing grid cells, which are accessible to the user
as well as lots of other useful functions that help the developer.

MyRichTextBox user control is basically a pair of MSRichTextBox con-
trols with some additional functionality. That includes reading data from
files and displaying the content, moving the vertical delimiter bar to enlarge
one (and shrink the other) display box. Each box also has a caption.

4. Numerical illustrative example

In following we show a step-by-step example of a computer implementation
of Push-and-Pull algorithm, applied to Numerical Example 1. The fully
coded version of the algorithm is available from the authors upon request.

Numerical Example 1:
Problem Definition:

Min 1X1 + 3X2 + 4X3 + 10X4
Constr.:

1X1 + 0X2 + 1X3 + 1X4 ≥ 10 ,

0X1 + 1X2 + 2X3 + 2X4 ≥ 25 ,

1X1 + 2X2 + 0X3 + 1X4 ≥ 20 .

Initial tabeleau:

i BVS 1 2 3 4 5S 6S 7S RHS
1 0 1 0 1 1 -1 0 0 10
2 0 0 1 2 2 0 -1 0 25
3 0 1 2 0 1 0 0 -1 20
Zj -1 -3 -4 -10 0 0 0 0

BVS is NOT complete.

Iteration No.: 1

Step 3: completing BVS (k = 1, r = 1)

i BVS 1 2 3 4 5S 6S 7S RHS
1 1 1 0 1 1 -1 0 0 10
2 0 0 1 2 2 0 -1 0 25
3 0 0 2 -1 0 1 0 -1 10
Zj 0 -3 -3 -9 -1 0 0 10

BVS in NOT complete.

Iteration No.: 2

Step 3: completing BVS (k = 5, r = 3)

i BVS 1 2 3 4 5S 6S 7S RHS
1 1 1 2 0 1 0 0 -1 20
2 0 0 1 2 2 0 -1 0 25
3 5 0 2 -1 0 1 0 -1 10
Zj 0 -1 -4 -9 0 0 -1 20

BVS in NOT complete.

Iteration No.: 3

Step 3: completing BVS (k = 3, r = 2)

i BVS 1 2 3 4 5S 6S 7S RHS
1 1 1 2 0 1 0 0 -1 20
2 3 0 0.5 1 1 0 -0.5 0 12.5
3 5 0 2.5 0 1 1 -0.5 -1 22.5
Zj 0 1 0 -5 0 -2 -1 70

BVS is complete.
Continue with Step 4.
Iteration No.: 4

Step 4: Push to optimal solution (k = 2, r = 3)

i BVS 1 2 3 4 5S 6S 7S RHS
1 1 1 0 0 0.2 -0.8 0.4 -0.2 2
2 3 0 0 1 0.8 -0.2 -0.4 0.2 8
3 2 0 1 0 0.4 0.4 -0.2 -0.4 9
Zj 0 0 0 -5.4 -0.4 -1.8 -0.6 61

Zj positive does NOT exist.
Continue with Step 5.

Step 5: Test the iteration results:

All RHS ≥ 0 and all Zj ≤ 0: solution is optimal

RESULT TESTING
constraint no. 1 TRUE: 10 ≥ 10
constraint no. 2 TRUE: 25 ≥ 25
constraint no. 3 TRUE: 20 ≥ 20

Test result: OK

SUMMARY
Status: OPTIMAL
Degeneracy: NO
Test to constraints: OK

MIN: 61
BVS: [1,3,2]
X1 = 2
X2 = 9
X3 = 8
X4 = 0

Number of iterations: 4
Number of additions/subtractions: 106
Number of multiplications/divisions: 134
Number of loops: 286
Number of decisions: 344

5. Comparison analysis

In this section we deal with determining the efficiency of the Push-and-
Pull algorithm comparing to the ordinary simplex. For this purpose both
algorithms were tested using the following 15 examples:

Example 01
max 2X1 + 6X2 + 8X3 + 5X4

Subject to
4X1 + X2 + 2X3 + 2X4 ≥ 80
2X1 + 5X2 + 4X4 ≤ 40

2X2 + 4X3 + X4 = 120

Example 02
min 2X1 + 3X2 − 6X3

Subject to
X1 + 3X2 + 2X3 ≤ 3

−2X2 + X3 ≤ 1
X1 − X2 + X3 = 2
2X1 + 2X2 − 3X3 = 0

Example 03
max 20X1 + 10X2 + 40X3 + 20X4 + 15X5

Subject to
X1 + 4X3 + 2X4 + 4X5 ≤ 120
2X1 + 5X2 + 2X3 + X4 ≤ 80
4X1 + X2 + 5X3 + 4X5 ≤ 240

Example 04
min X1 + 3X2 + 4X3 + 10X4

Subject to
X1 + + X3 + X4 ≥ 10

X2 + 2X3 + 2X4 ≥ 25
X1 + 2X2 + X4 ≥ 20

Example 05
max 100X1 + 10X2 + X3

Subject to
X1 ≤ 1
20X1 + X2 ≤ 100
200X1 + 20X2 + X3 ≤ 100 000

Example 06
min 2X1 + 2.5X2

Subject to
3X1 + 4X2 ≥ 20000
0.75X1 + 0.65X2 ≥ 4000

Example 07
max 60X1 + 70X2 + 75X3

Subject to
3X1 + 6X2 + 4X3 ≤ 2400
5X1 + 6X2 + 7X3 ≤ 3600
3X1 + 4X2 + 5X3 ≤ 2600

Example 08
max 2X1 + 2.5X2

Subject to
3X1 + 4X2 ≤ 20000
0.75X1 + 0.65X2 ≤ 4000

Example 09
max 12X1 + 18X2

Subject to
2X1 + 3X2 ≤ 33
X1 + X2 ≤ 15
X1 + 3X2 ≤ 27

Example 10
min 6X1 − 3X2 − 4X3

Subject to
−2X1 + X2 ≤ 0
−3X1 + X2 + X3 ≥ 0

X2 + X3 = 24

Example 11
max 2X1 + X2

Subject to
X1 + 3X2 ≤ 12
X1 + 2X2 ≤ 10
2X1 + 5X2 ≤ 30

Example 12
min 4X1 − 2X2 + X3

Subject to
2X1 − X2 + X3 ≤ 30
3X1 + X2 − X3 ≤ 26

X2 + X3 ≤ 13

Example 13
max 12X1 + 6X2 + 4X3

Subject to
X1 + 2X2 ≤ 6
−X1 − X2 + 2X3 ≤ 4

X2 + X3 ≤ 2

Example 14
max −X1 + 21X2 + 24X3 + X4 + 12X5

Subject to
0.5X1 + 6X2 + 7X3 − 2X4 + X5 ≤ 64
−X1 + 2X2 + 4X3 + 2X4 + 5X5 ≤ 27
2X1 + 3X2 − X3 − 4X4 + 3X5 ≤ 17
3X1 + 2X2 + 4X3 − X4 − X5 ≤ 21

Example 15
min 3X1 + X2 −X3

Subject to
2X1 + X2 − X3 = 10
−X1 + X3 ≤ 6
3X1 − 4X3 ≤ 8

In our comparison analysis we used five counters: total number of it-
erations, additions / subtractions, multiplications / divisions, loops and
decisions.

The results are displayed in Table 1, which has four sections: the char-
acteristics of problem definitions for each example, the Push-and-Pull, or-
dinary simplex result summary, and the calculated Difference section. As
can be seen in Table 1, Push-and-Pull needed less iterations to achieve op-
timal solutions in examples 4 and 15 and the same number as simplex in all

others. Concerning other four parameters it appears that Push-and-Pull
characteristic is that it uses less arithmetical operations but more decision
steps (which are less expensive from calculation point of view).

Table 1. Results of comparison analysis

Definition PUSH AND PULL
Name Obj. m s Constr. Status Deg. Value BVS Iter +/- */+ Loop Dec.
Example01 MAX 3 4 ><= OPTIMAL NO 280 153 4 92 119 234 285
Example02 MIN 4 3 <<== OPTIMAL NO -2.4583 2531 3 79 94 199 233
Example03 MAX 3 5 <<< OPTIMAL NO 1.33E+03 318 2 62 82 180 210
Example04 MIN 3 4 >>> OPTIMAL NO 61 132 4 106 134 286 344
Example05 MAX 3 3 <<< OPTIMAL NO 100 000 453 7 160 193 351 416
Example06 MIN 2 2 >> OPTIMAL NO 1.29E+04 21 2 26 34 92 115
Example07 MAX 3 3 <<< OPTIMAL NO 34 200 416 2 50 61 144 173
Example08 MAX 2 2 << OPTIMAL NO 1.29E+04 21 2 26 34 87 110
Example09 MAX 3 2 <<< OPTIMAL NO 198 142 2 44 52 116 142
Example10 MIN 3 3 <>= OPTIMAL YES -96 531 3 62 76 169 201
Example11 MAX 3 2 <<< OPTIMAL NO 20 315 1 25 28 83 102
Example12 MIN 3 3 <<< OPTIMAL NO -26 452 1 28 33 96 113
Example13 MAX 3 3 <<< OPTIMAL NO 80 153 2 50 59 140 163
Example14 MAX 4 5 <<<< OPTIMAL NO 219.0714 6423 4 172 206 377 443
Example15 MIN 3 3 =<< OPTIMAL NO 10 245 1 23 29 95 103

STD.SIMPLEX DIFFERENCE
Status Deg. Value BVS Iter +/- */- Loop Dec. Status Deg. Value BVS Iter +/- */+ Loop Dec.
OPTIMAL NO 280 153 4 256 318 316 300 ok ok ok ok 0 -164 -199 -82 -15
OPTIMAL NO -2.4583 2531 3 237 274 284 245 ok ok ok ok 0 -158 -180 -85 -12
OPTIMAL NO 1.33E+03 318 2 143 178 191 175 ok ok ok ok 0 -81 -96 -11 35
OPTIMAL YES 61 132 5 381 478 459 436 ok DIFF ok ok -1 -275 -344 -173 -92
OPTIMAL NO 100 000 453 7 328 404 402 400 ok ok ok ok 0 -168 -211 -51 16
OPTIMAL NO 1.29E+04 21 2 80 105 102 119 ok ok ok ok 0 -54 -71 -10 -4
OPTIMAL NO 43 200 416 2 113 137 147 141 ok ok ok ok 0 -63 -76 -3 32
OPTIMAL NO 1.29E+04 21 2 56 73 78 93 ok ok ok ok 0 -30 -39 9 17
OPTIMAL NO 198 142 2 98 118 125 127 ok ok ok ok 0 -54 -66 -9 15
OPTIMAL YES -96 531 3 181 221 224 217 ok ok ok ok 0 -119 -145 -155 -16
OPTIMAL NO 20 315 1 61 71 81 78 ok ok ok ok 0 -36 -43 2 24
OPTIMAL NO -26 452 1 70 82 96 86 ok ok ok ok 0 -42 -49 0 27
OPTIMAL NO 80 153 2 113 135 147 137 ok ok ok ok 0 -63 -76 -7 26
OPTIMAL NO 219.0714 6423 4 372 442 450 383 ok ok ok ok 0 -200 -236 -73 60
OPTIMAL NO 10 245 4 200 245 249 245 ok ok ok ok -3 -177 -216 -154 -142

For the further enhancement of this algorithm, some refinements might be
needed in the computerized implementation phase. For example, in decid-
ing on exchanging the variables, one might consider to total contribution,
rather than marginal contribution to the current objective function value.
In other words, recall that the choice of smallest non-negative C/R provide
the marginal change in the objective function, while maintaining feasibility.
However, since we are constructing the C/R for all candidate variables, we
may obtain the largest contribution by considering the product Cj (C/R)
in our selection rule. The following example illustrates this enhancement
in the algorithm:

Example: The following problem is attributed to Klee and Minty.
max 100X1 + 10X2 + X3

Subject to
X1 ≤ 1
20X1 + X2 ≤ 100
200X1 + 20X2 + X3 ≤ 100000,

and X1, X2, X3 ≥ 0.

This example is constructed to show that the Simplex method is exponen-
tial in its computational complexity. For this example with n = 3, it takes
23 = 8 iterations.
Converting the constraints to equalities, we have:
max 100X1 + 10X2 + X3

Subject to
X1 + S1 = 1
20X1 + X2 + S2 = 100
200X1 + 20X2 + X3 + S3 = 100000,

and X1, X2, X3 ≥ 0.

Initialization: The initial tableau with the two slack variables as its BV is:

BVS X1 X2 X3 S1 S2 S3 RHS C/R1 C/R2 C/R3
S1 1 0 0 1 0 0 1 1
S2 20 1 0 0 1 0 100 5 100
S3 200 20 1 0 0 1 100000 500 5000 100000
Cj 100 10 1 0 0 0

Total Contribution Criterion:

• The smallest non-negative C/R1 is 1, which belongs to X1, with
marginal contribution of C1 = 100. Therefore, its total contribution
to the current objective function value is C1(C/R1)= 100(1) = 100.

• The smallest non-negative C/R2 is 100, which belongs to X2, with
marginal contribution of C2 = 10. Therefore, its total contribution to
the current objective function value is C2(C/R2)= 10(100) = 1000.

• The smallest non-negative C/R3 is 100000, which belongs to X3 with
marginal contribution of C3 = 1. Therefore, its total contribution
to the current objective function value is C3(C/R3)= 1(100000) =
100000.

Therefore, based on the ”total contribution criterion”, in our variable se-
lection, variable X3 comes in. Beak any ties arbitrarily.

The Push Further Phase: The candidate variables to enter are X1, X2,
and X3 with C/R shown in the above table. Based on the total contribu-
tion criterion, the largest contribution to the objective function achieved
by bringing X3 in. Therefore, replacing S3 with X3, after pivoting we get:

BVS X1 X2 X3 S1 S2 S3 RHS
S1 1 0 0 1 0 0 1
S2 20 1 0 0 1 0 100
X3 200 20 1 0 0 1 100000
Cj -100 -10 0 0 0 -1

This tableau is the optimal one. The optimal solution is: X1 = 100000,
X2 = 0, X3 = 0, with the optimal value of 100000.

6. Concluding remarks

LP problems, which lack feasibility at the origin point, have raised diffi-
culties since the beginning of LP. For such problems, the ordinary simplex
algorithm requires additional variables (i.e., artificial variables) along with
large penalty terms in the objective function. Unfortunately, adding these
extraneous variables creates computational instability [9, 12] and increases
the computational complexity [13]. Moreover, classroom experience shows
that some students, particularly non-mathematical majors, have difficulty
in understanding the intuitive notion of such requirement [3].

We proposed a new general solution algorithm, which is easy to under-
stand, and it is free from any extraneous variables. The algorithm consists
of two phases. The Push Phase uses the rules similar to the ordinary sim-
plex in generating a basic variable set (BVS). The Pull Phase (if needed)
generates a BVS which is the optimal (if it exists). The algorithm working
space is the space of the original variables with a geometric interpretation
of its strategic process.
The proposed solution algorithm has the following additional features:

1- The algorithm’s working space is the space of the original variables.
The tableau is simpler since the row operations are performed directly
on Cj’s. Additionally, there is no need for the reduced cost row
(known as Cj − Zj). The proposed algorithm has simplicity and
potential for wide adaptation by instructors. The entire variables
are the natural parts of the LP problem: decision variables (Xj),
and the slack/surplus variable (Si) for resource/production types of
constraints respectively, with significant managerial and economical
meanings and applications.

2- The proposed solution algorithm is a general-purpose method for
solving any LP type problems. More specialized methods exist that
can be used for solving LP problems with specific structure. The
new algorithm is most suitable for LP problems with a large number
of equality (=) and/or production constraints (≥), such as network
models with lower bound on their arc capacities.

3- It is well known that the initial basic solution by the primal simplex
could be far away from the optimal solution [15]. The BVS augmen-
tation concept which pushes toward faces of the feasible region which
may contain an optimal rather than jumping from a vertex to an
improved adjacent one to provide a ”warm-start”.

4- A computer implementation system is developed to enable the reader
to run one or both algorithms. The system also creates a detailed and
comparison analysis between Push-and-Pull and ordinary simplex.
The fully coded version of the algorithm is available from the authors
upon request.

A comparative study has been done, which compares Push-and-Pull to
ordinary simplex. The result of this study shows that the new proposed
algorithm is better and faster than ordinary simplex. At this stage, a con-
vincing evaluation for the reader would be the application of this approach
to a problem he/she solved by any other methods.

Acknowledgment

We are grateful for the referees’ useful comment and suggestions. The
National Science Foundation Grant CCR-9505732 supported this work.

References

[1] D. H. Ackeley, G. E. Hilton and T. J. Sejnovski, A learning algorithm
for Boizmann machine, Cognitive Science, 62 (1985) 147-169

[2] H. Arsham, Affine geometric method for linear programs, Journal of
Scientific Computing, 12(3) (1997) 289-303.

[3] H. Arsham, Initialization of the simplex algorithm: An artifical-free
approach, SIAM Rewiew, 39(4) (1997) 736-744.

[4] H. Arsham, Distribution-routes stability analysis of the transportation
problem, Optimization, 43(1) (1998) 47-72.

[5] H. Arsham, B. Baloh, T. Damij and J. Grad, An algorithm for simplex
tableau reduction with numerical comparison, International Journal
of Pure Applied Mathematics, Vol. 4, No. 1, (2003) 57-85

[6] H. Arsham, T. Damij and J. Grad, An algorithm for simplex tableau
reduction: the push-to-pull solution strategy, Applied Mathematics
and Computation, 137 (2003) 525-547

[7] V. Chvatal, Linear Programming, Freeman and Co., New York
(1993).

[8] G. Dantzig, Linear Programming and Extensions, Princeton Uni-
versity Press, N.J., (1968).

[9] T. Gao, T. Li, J. Verschelde, and M. Wu, Balancing the lifting values
to improve the numerical stability of polyhedral homotopy continuation
methods, Applied Mathematics and Computation, 114 (2-3) (2000)
233-247.

[10] D. O. Hebb, Organization of Behavior, Wiley, New York (1949)

[11] V. Klee and G. Minty, How good is the simplex algorithm,
Inequalities-III, Edited by 0. Shisha, Academic Press, (1972) 159-175.

[12] V. Lakshmikantham, S. Sen, M. Jain, and A. Ramful, O(n3) Noniter-
ative heuristic algorithm for linear programs with error-free implemen-
tation, Applied Mathematics and Computation, 110 (1) (2000)
53-81.

[13] G. Mohr, Finite Element modelling of distribution problems, Applied
Mathematics and Computation, 105 (1) (1999) 69-76.

[14] K. Papparrizos, The two-phase simplex without artificial variables,
Methods of operations Research, 61 (1) (1990) 73-83.

[15] A. Ravindran, A comparison of the primal-simplex and complemen-
tary pivot methods for linear programming, Naval Research Logistic
Quarterly, 20 (1) (1973) 95-100.

[16] H. Taha, Operations Research: An Introduction, Macmillan,
New York, (1992).

