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The article describes a new method for optimizing one-dimensional stock cutting in the 
case of a low ratio between stock and order lengths. The proposed method can resolve the 
general cutting stock problem which means that standard stock lengths, non-standard stock 
lengths or a combination of both can be cut in exactly the required number of pieces. A 
sample problem is presented and solved and a comparison with other methods is made. If 
the ratio between the average stock length and the average order length is less than 4, 
better results than existing methods can be expected.  
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OPTIMIZACIJA ENODIMENZIONALNEGA RAZREZA: PRIMER NIZKEGA 
RAZMERJA MED DOLŽINAMI NA ZALOGI IN V NAROČILU 

 
 
V članku je opisana nova metoda za optimizacijo enodimenzionalnega razreza za primer 
nizkega razmerja med dolžino palic na zalogi in dolžino palic v naročilu. Predlagana 
metoda rešuje splošni problem razreza, kar pomeni, da omogoča optimizacijo razreza 
natančnega števila standardnih ali nestandardnih dolžin oziroma kombinacije obeh. 
Metoda je predstavljena na praktičnem primeru, hkrati pa je opravljena primerjava s 
podobnimi metodami, ki rešujejo isti problem. Če je razmerje med povprečno dolžino na 
zalogi in povprečno dolžino v naročilu manj kot 4, potem je metoda boljša od obstoječih, 
kar pomeni, da generira manj neuporabnega ostanka. 
 
Ključne besede: razrez, optimizacija, hevristična metoda 
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1. Introduction   
 
 A one-dimensional cutting stock problem (CSP) occurs in different industrial processes. 
Many exact or heuristic methods based on an item-oriented (e.g., Gradisar et al. 1997, 
Gradisar et al. 1999a), pattern-oriented (e.g., Gau and Washer 1995) or mixed (e.g., 
Gradisar et al. 1999b) approach to solving CSPs have been developed. Exact methods 
(e.g., Amor et al. 2006, Cordeau 2006, Alves and de Carvalho 2008) offer optimal 
solutions but they can only be used to resolve small to medium-size instances. Also 
heuristic solutions can lead to results with a very low unnecessary trim loss which means 
that further considerable trim loss reductions are hardly possible. The enhancement of the 
method, for example, in (Gradisar and Trkman 2005) leads to a reduction of trim loss from 
0.025% to 0.015%. Although the improvement is 60% it represents a very small 
contribution to a reduction of company costs.  
 The trim loss does not only depend on the optimization method but also on the nature of 
the problem. In practice, one can find a general one-dimensional CSP (Gradisar et al. 
2002) with an average trim loss amounting to 10 or even 20% (e.g., Erjavec et al., 2008). 
The reason for that is the very low ratio between stock and order lengths. A considerable 
improvement of the optimization method would in such cases also lead to important cost 
reductions. However, generally acceptable solutions to this problem have not appeared in 
the literature so far. Therefore, the purpose of this article is to propose a new optimization 
method for solving a general CSP where the ratio between stock and order lengths is 
relatively low.   
 The rest of the article describes the cutting problem and development of a solution in 
the form of a computer program. A sample problem is presented and solved, while a 
comparison with other methods is made.  
 
2. Definition of the problem  
 
 For every customer order a sufficiently large stock of material is available. Most of the 
stock has the same length or there are a few different standard lengths. Some of the stock 
can be of several different non-standard lengths as they are leftovers of previous orders and 
there is usually just one piece per one non-standard length. We consider the lengths as 
integers. If they are not integers then we assume that it is always possible to transform 
them into integers. An order consists of a request for a given number of order lengths into 
the required number of pieces. The following notation is used:  
 
li   order lengths; i = 1,...,m (order lengths are sorted in a decreasing order: l1≥ l2≥ l3 …), 
ni  the required number of pieces of order length li, 
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Lk  stock lengths; k = 1,...,p, 
Nk  number of pieces in stock of length Lk. 
 
 The cutting plan consists of cutting patterns that have been cut from different stock 
lengths and of the corresponding frequencies needed to satisfy all orders. Cutting pattern j 
that was cut from stock length k may be expressed by a vector  
 
(a1jk , a2jk , a3jk ,..., amjk )                                                                                          
 (1) 
 
that satisfies 
 m 
 ∑ li ⋅ aijk ≤ Lk ,                         (2) 
i=1 
 
aijk ≥  0 and integer,                      (3) 
 
in which aijk represents the number of times order length li appears in this particular 
pattern. Let us denote: 
 
xjk frequency of cutting pattern j having been cut from stock length k, 
 
zk  total number of cutting patterns (1) cut from stock length k satisfying (2) and (3).  
 
The following integer programming model can be formulated: 
 
       p   zk            
min  ∑   ∑ xjk ⋅ Lk          (minimize the sum of stock lengths to be cut)   
 (4) 
    k=1 j=1          
 
s.t. 
       zk            
  ∑ xjk ≤ Nk        ∀ k (stock constraints)           (5) 
  
     j=1         
 
       p   zk
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  ∑   ∑ aijk ⋅ xjk  = ni  ∀ i  (demand constraints)          (6) 
    k=1 j=1           
             
  xjk ≥ 0 and integer   ∀ j,k.                                                  (7) 
 
 This description is similar to a general one-dimensional CSP and slightly different to 
those of Gau and Washer (1995) because of the multiple stock lengths, stock constraints 
and items of order lengths which must be cut into the exactly demanded number of pieces. 
Therefore, the described problem cannot be solved using the classic hybrid algorithm 
developed by Gilmore and Gomory (1961, 1963).  
 According to the typology of cutting and packing problems (Dyckhoff 1990, Washer et 
al. 2007, Trkman et al. 2007), this problem can be described as pure C&P with input 
minimization, heterogeneous large objects and weakly heterogeneous small objects or 
1/V/D/M/IN where 1 stands for a one-dimensional problem, V means that all items need to 
be produced from a selection of large objects, D means that all large objects can be 
different, M indicates many small items of several dimensions and IN stands for 
instantaneous. 
 
 
3. Development of the solution  
 
 The proposed sequential heuristic procedure is developed as an iteration of four basic 
steps. Each time a proportion of demand is satisfied. The procedure terminates when all of 
the demand is fulfilled. At the beginning, all stock lengths belong to the set of unprocessed 
stock lengths. The number of unprocessed pieces (UNk) of each stock length Lk equals Nk 
while the number of unprocessed pieces (uni) of each order length li equals ni. The set of 
processed stock and order lengths is empty. Upon each iteration, the set of unprocessed 
pieces of stock lengths is reduced. The number of cut pieces of some order lengths also 
changes, as do the processed stock lengths which become equal to the trim loss. When all 
pieces of some stock length have been processed in a previous iteration this stock length 
cannot be used in the next one. At the end, all uni equals 0. An iteration consists of the 
following steps: 
 
Step 1: Solve the knapsack problem and find the optimal and next to optimal solution for 
each stock length by only taking unprocessed pieces of order lengths into account. 
Step 2: Sort the cutting patterns obtained in step 1 according to a1jk, a2jk, a3jk, ... The result 
is a sorted list of patterns. On top of the list are patterns containing longer order lengths, 
while the opposite are found on the bottom. 
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Step 3: Starting at the top of the sorted list of patterns and moving sequentially down 
select the corresponding frequency for each pattern by taking unprocessed pieces of order 
and stock lengths into account. The corresponding frequency is the highest frequency 
which at that moment is not higher than the number of unprocessed pieces of 
corresponding stock length and at the same time low enough to prevent the overproduction 
of any order length. Consequently, immediately after the selection of an individual 
frequency reduce the corresponding number of unprocessed pieces of stock and order 
lengths.  
Step 4: If all the orders are still not fulfilled, then go back to step 1, otherwise stop. 
  
 The algorithm is developed on the following assumptions: 
 

1. The optimal or near to optimal solution of the cutting problem in the case of a 
lower ratio between the average stock and order lengths consists of the optimal or 
next to optimal solution of knapsack problems. 

2. It is easier to find a good solution if the cutting patterns containing largest order 
lengths are processed earlier.  

 
 The first assumption is based on the fact that in the case of a lower ratio between the 
average stock and order lengths the number of possible solutions is lower. The probability 
that the optimal or next to optimal solution of knapsack problems is also the optimal or 
near to optimal solution of the cutting problem is therefore greater. 

The second assumption seeks to minimize the influence of ending conditions (Haessler 
and Sweeney 1991). It is a statistically proven general fact that it is easier to find a good 
solution if it is chosen from the largest possible set of possible solutions (Gradisar et al. 
1999a). In order to keep the set of possible solutions as large as possible as long as 
possible during the cutting process the longer order lengths are processed earlier. The 
algorithm for the optimization of stock length cutting is shown in the flowchart in Figure 1. 

 
Figure 1    Flowchart of the Cutting Algorithm 

 
 The flowchart indicates it is necessary to solve a series of knapsack problems in order to 
obtain cutting patterns and for each of them to then select the corresponding frequency for 
every iteration. The dynamic programming scheme of the KNAPSACK procedure for the 
case of four order lengths l1,…, l4 can be summarized as follows: 
 
KNAPSACK procedure: 
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1.  initialize Rmin ← Rmin-1← maxint, i← j+1, a1jk←0, a2jk←0, a3jk←0, a4jk←0, a1ik←0, 
a2ik←0, a3ik←0, a4ik←0 
2.    for l = min{un1, int(Lk  /l1)} to 0 step -1 do 
3.       D1 ← Lk - l1⋅ l 
4.    for m = min{un2, int(D1 /l2)} to 0 step -1 do 
5.          D2 ← D1 - l2⋅ m 
6.           for n = min{un3, int(D2 /l3)} to 0 step -1 do 
7.            D3 ← D2 - l3⋅ n 
8.                t ← min{un4, int(D3 /l4)} 
9.               R ← D3 - l4⋅ t 
10.              if  R < Rmin   
11.              then  
12.       Rmin-1 ← Rmin  
13.                  Rmin ← R 
14.                  a1ik ← a1jk, a2ik ←  a2jk, a3ik ← a3jk, a4ik ←  a4jk

15.                     a1jk ← l, a2jk ←  m, a3jk ← n, a4jk ←  t 
16.              endif 
17.      endfor 
18.    endfor 
19.   endfor 
 
 In the KNAPSACK procedure a sequence of vectors (1) is generated in a 
lexicographically decreasing order to find the optimal and second to optimal pattern for Lk. 
The int function converts a numeric expression into an integer; all digits to the right of the 
decimal place are ignored.  
 The time complexity of the proposed algorithm can be calculated similarly as in 
(Gradisar et al. 1999a) and mostly depends on m. An acceptable response time can be 
expected if m is 7 or less.  
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4. Results 
 
 The proposed algorithm is written in the FORTRAN programming language which 
enables very rapid processing. The program consists of less than 1,000 lines of code. The 
data input and the printout of the results are made in 4GL. The program can be run on a 
personal computer. It was called LCUT. LCUT is not intended for general use but for those 
cases with a small ratio between stock and order lengths. It can be used as an independent 
solution or as ‘add-in’ for existing applications. Because of the complexity of calculations 
the time limit for solving each problem is set to 30 seconds. Therefore LCUT needs to 
have the following constraints:  

- the ratio between the average stock and the average order length ≤ 10 
- the number of different order lengths ≤ 7 
- the number of pieces for each order length ≤ 99 
- the number of different stock lengths ≤ 20 
- the number of pieces for each stock length ≤ 99 

 Creating a cutting plan for a case falling within the listed parameters takes less than 30 
seconds on a personal computer (Pentium 4). 
 As an illustration of the use of LCUT a typical practical case was selected. The data 
were supplied by a leading retailer of technical products in South-east Europe. One of its 
retail areas is the resale of various metal bars which need to be cut by the retailer to meet 
customers’ demands. The input data are shown in Figure 2. The customer order contains 
four different order lengths. The sum of the required pieces is 34. There is an abundance of 
material in stock: 57 pieces of 15 different lengths. Standard and non-standard stock 
lengths are not treated separately. All lengths are in centimeters. The ratio between the 
largest stock and the shortest order length is 3.7.  
 Calculation of the results takes less than 1 second. 29 pieces of stock lengths are used. 
All patterns consists of one or a maximum of two pieces. The frequency of the patterns 
range from 1 to 11. The total trim loss is 3,345 cm, which makes up 11.98% of the total 
utilized stock lengths.  
 The cutting plan of the presented case was also calculated with three other computer 
programs: CUT (Gradisar et al. 1999a), C-CUT (Gradisar and Trkman 2005) and the 
LOPT commercial application which is available on the web (bestopt.de). These programs 
were selected for comparison because they solve the same type of problem. In all three 
cases the results are identical and are presented at the end of Figure 2. The total trim loss is 
3,590 cm, which makes up 12.75% of the total utilized stock lengths.  The comparison 
with LCUT shows that in the case of LCUT the trim loss is 245 cm less, which means a 
0.77% saving of total utilized stock lengths. 
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Figure 2   Example of the LCUT, CUT, C-CUT and LOPT Results 
 

To test LCUT more extensively a series of problem instances was generated. To 
generate the problem instances a slightly modified problem generator CUTGEN1 (Gau and 
Washer 1995, Gradisar et al. 2002) was used. Input data were generated according to 
problem descriptors as a random sample of one or more test problems. The problem 
descriptors are: 
m   - number of different order lengths 
v1, v2  - lower and upper bounds of order lengths, i.e. v1 ≤ li ≤ v2  ( i = 1,...,n) 
n  - average demand per order length 
P   - number of different standard stock lengths 
s1, s2  - lower and upper bounds of a standard stock length, i.e. s1 ≤ Lk  ≤ s2  ( k = 1,...,P) 
N  - number of pieces of standard stock lengths 
p   - number of non-standard stock lengths 
u1, u2 - lower and upper bounds of a non-standard stock length, i.e. u1 ≤ Lj ≤ u2  ( j = 1,...,p) 
r   - number of consecutive generated problem instances 
 The test problems were generated with the following parameter values: 

 - determination of order lengths and demands:  
By assigning different values to problem parameters m (m = 5, 6, 7), v1 and v2 
(v1 = 100 and v2 = 200, v1 = 200 and v2 = 300, v1 = 300 and v2 = 400) and n (n 
= 10, 20, 30) and combining them with each another 27 test cases were 
generated.  

 - determination of standard stock lengths:  
The number of standard stock lengths P was 10 and the number of pieces N 
was 8. This means that the stock consists of 90 pieces, 80 of standard stock 
lengths and 10 of non-standard. In this case, it was also possible to solve the 
problem with CUT where the highest number of stock lengths is limited to 99. 
The lower and upper bounds of standard stock length s1, and s2 were set in such 
a way that the ratio between the largest stock and shortest order length for three 
pairs v1, v2 was 3, 4 and 5 (s1 = 200 and s2 = 300, s1 = 600 and s2 = 800, s1 = 
1200 and s2 = 1500). 

 - determination of non-standard stock lengths:  
The number of non-standard stock lengths p was also 10. The lower and upper 
bounds of non-standard stock length u1 and u2 were set similarly as the 
standard lengths, except they were 50% shorter (u1 = 100 and u2 = 150, u1 = 
300 and u2 = 400, u1 = 600 and u2 = 750). 

 For each test case 10 consecutive problem instances (r = 10) were generated. In total 
there were 270 problem instances. The problem descriptors and seeds used to generate the 
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data for 27 test cases are presented in the first 12 columns of Table 1. All lengths are in 
centimeters. 

Table 1   The Problem Descriptors and Results for 27 Test Cases 
 
 The problem instances were solved with two computer programs LCUT and CUT in 
order to compare both algorithms. CUT was selected for a more extensive comparison 
because LCUT is meant to be an ‘add-in’ or upgrade of CUT. Although both algorithms 
solve a similar problem there is a difference in the calculation of the trim loss between 
CUT and LCUT. CUT does not treat all unused parts of stock lengths longer than the 
shortest order length as a trim loss. For the purpose of comparison the leftovers of LCUT 
were treated in the same way.  
 The results are shown in the last five columns of Table 1. Each row presents one test 
case as the average trim loss in centimeters and in percent calculated from 10 problem 
instances for CUT and LCUT. The calculation of each of the 270 problem instances takes 
less than 1 second. 
 From the last column of Table 1 it is evident that in 19 out of 27 test cases CUT offers 
better results than LCUT. The difference between the average trim loss of CUT and LCUT 
is approximately 10%. The smallest difference is 1% in the case of m is 5 and the greatest 
23% in the case of m is 6. If m is 7, then the average difference is 10%.  
 On the other hand, in all test cases with the lowest ratio between the largest stock and 
shortest order length and where n is 10 or 20 the results of LCUT are better. The greatest 
reductions of trim loss are seen in test cases 1 and 2. If n is 30 the result of LCUT is only 
better in test case 3. This means that the effectiveness of LCUT does not only depend on 
the ratio between the stock and order length but also on n. If n is smaller the results of 
LCUT are better. In the first three test cases n is 10, 20 and 30 and with a growing n the 
reduction of the trim loss decreases: 8.05%, 5.93% and 2.56%. A similar situation is found 
for the other test cases. Such dependency between n and the trim loss can be expected 
since a growing n increases the number of possible solutions and LCUT is based on the 
assumption that this number is low. In general, a low number of possible solutions means a 
higher trim loss. In all the test cases where the results of LCUT are better the average trim 
loss is relatively high, between 8% and 20%. 
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5. Conclusion  
 
 The paper analyzes the problem of reducing the trim loss in one-dimensional stock 
cutting where the ratio between the stock and order length is low. The new heuristic 
procedure was developed in the form of a computer program called LCUT. Testing LCUT 
and comparing it with CUT showed that LCUT provides better results if the ratio between 
the average stock and average order length is less than 4, the average number of pieces per 
order length is less than 30 and the average trim loss is more than 8%. In most other cases 
the results of CUT are better. Therefore, LCUT cannot be used to replace CUT or some 
other method but rather as a supplement or ‘add-in’ in the abovementioned cases especially 
because the algorithm is relatively fast and in most cases takes less than 1 second to 
calculate the cutting plan.  

 
References 

 

Amor H. B., J. Desrosiers, J. M. V. de Carvalho. 2006. Dual-Optimal Inequalities for  

Stabilized Column Generation. Oper. Res. 54 454-463. 

Alves C. and V. de Carvalho. 2008. A stabilized branch-and-price-and-cut algorithm for 
the multiple length cutting stock problem. Comp. Oper. Res. 35 1315-1328. 

Cordeau J. F. 2006. A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Oper. Res. 
54 573-586. 

Dyckhoff H. 1990. A typology of cutting and packing problems. Eur. J. Oper. Res. 44 145-
159. 
Erjavec J., P. Trkman, M. Gradisar. Renovation of the Cutting Stock Process. Internat. J. 

Production Res. In press. 
Gau T., G. Washer. 1995. CUTGEN1: A problem generator for the Standard One-

dimensional Cutting Stock Problem. Eur. J. Oper. Res. 84 572-579. 
Gilmore P. C. and R. E. Gomory. 1961. A linear programming approach to the cutting 
stock  
  problem.  Oper. Res. 9 849-859. 
Gilmore P. C. and R. E. Gomory. 1963. A linear programming approach to the cutting 
stock  

problem, Part II. Oper. Res. 11 863-888. 
Gradisar M., J. Jesenko, G. Resinovic. 1997. Optimization of roll cutting in clothing 
industry. 

 Comp. Oper. Res. 24 945-953.  



 
 

11 

Gradisar M., G. Resinovic, J. Jesenko, and M. Kljajic. 1999a. A sequential heuristic 
procedure for one-dimensional cutting. Eur. J. Oper. Res. 114(3) 557-568. 

Gradisar M., M. Kljajic, and G. Resinovic. 1999b. A hybrid approach for optimization of 
one-dimensional cutting. Eur. J. Oper. Res. 119(3) 165-174. 

Gradisar M., G. Resinovic, and M. Kljajic. 2002. Evaluation of algorithms for one-
dimensional cutting. Comp. Oper. Res. 29(9) 1207-1220. 

Gradisar M. and P. Trkman. 2005. A combined approach to the solution to the general 
one-dimensional cutting stock problem. Comp. Oper. Res. 32 (7) 1793-1807. 

Haessler R. W., P. E. Sweeney. 1991. Cutting stock problems and solution procedures. 
Eur. J. Oper. Res. 54 141-150. 

Trkman, P. and M. Gradisar. 2007. One-dimensional cutting stock optimization in 
consecutive time periods. Eur. J. Oper. Res. 179(2) 291-301. 

Wascher, G., H. Hausner, and H. Schumann. 2007. An improved typology of cutting and 
packing problems. Eur. J. Oper. Res. 183(3) 1109-1130. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

12 

 
sort order lengths in decreasing order 

star

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t

k←1

procedure KNAPSACK  

UNk ← Nk, ∀ k; uni ← ni, ∀ i

k < p k← k+1

sort cutting patterns  according to a1jk, a2jk, a3jk, ...   

yes

 

stop 

select first pattern

 uni = 0, ∀ i

ye

 
last pattern?select next pattern 

yes

 

determine corresponding frequency xjk

UNk← UNk - xjk; uni ← uni - aijk ⋅ xjk  , ∀ i

printout the results 

j← 
j+2

 j←1 

Figure 1    Flowchart of the Cutting Algorithm 
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DETAILS OF ORDER LENGTHS 
  No. length    pieces   

1         965      12                 
2         780         7                 
3         538       10                
4         430        5                   

          
DETAILS OF STOCK LENGTHS   
 No. length    pieces 

1     1200    12           
     2       750       10           

3          685       10           
4         590       10           

     5          865         4           
 6        1600         2           

7          600         1           
8       500         1           

     9        1400         1           
    10         640         1           
    11         800         1           
    12         765         1           
    13         670         1           
    14         690         1           
    15         820         1           

 
RESULTS OF LCUT  
   utilized stock lengths 
  No.     length pieces          pattern    trim loss    -%  

  1          1200  11 1x965[1]   235 19.58
  4            590  10 1x538[3] 52 8.81
  5            865    2 2x430[4] 5 0.58
  5            865    1 1x780[2] 85 9.83
  6          1600    2 2x780[2] 40 2.50
  9          1400    1 1x965[1]  

1x430[4] 
5 0.36

11            800    1 1x780[2] 20 2.50
15            820    1 1x780[2] 40 4.88

Total trim loss: 3345 (11.98%)  
 
RESULTS OF CUT, C-CUT, LOPT 
   utilized stock lengths 
 No.  length pieces          pattern        trim loss    -%  

  1          1200  12 1x965[1]   235 19.58
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  4            590    9 1x538[3] 52 8.81
  5            865    2 2x430[4] 5 0.58
  6          1600    2 2x780[2] 40 2.50
  8            500    1 1x430[4] 70 14.00
  9          1400    1 1x780[2]  

1x538[3] 
82 5.86

11            800    1 1x780[2] 20 2.50
15            820    1 1x780[2] 40 4.88

Total trim loss: 3590 (12.75%)  
 

Figure 2   Example of the LCUT, CUT, C-CUT, and LOPT Results 
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                           CUT               LCUT   
                                                                                        average            average 
No.  m     v1     v2   n    P      s1    s2     p    u1    u2 seed   trim loss   -%   trim loss   -% 
 1     2     3      4     5    6      7       8     9   10    11   12         13       14        15       16       13-
15
1      5   100  200  10  10   200   300  10  100  150  111    1865   
28.29 1334   20.24 531 
2      5   100  200  20  10   200   300  10  100  150  112   3526   
25.22  2698   19.29 828 
3      5   100  200  30  10   200   300  10  100  150  113 3029   
14.23 2484   11.67 545 
4      5   200  300  10  10   600   800  10  300  400  121   258     
2.23     487     4.13 -229 
5      5   200  300  20  10   600   800  10  300  400  122   779     
3.28  1041     4.39 -262 
6      5   200  300  30  10   600   800  10  300  400  123 1723     
4.74 2097     5.77 -374 
7      5   300  400  10  10 1200 1500  10  600  750  131   192     
1.18     547     3.36 -355 
8      5   300  400  20  10 1200 1500  10  600  750  132   569     
1.55     708  1.93 -139 
9      5   300  400  30  10 1200 1500  10  600  750  133 1186     
2.10 1905     3.38 -719 
10    6   100  200  10  10   200   300  10  100  150  211 1169   
10.25       967     8.47 202 
11    6   100  200  20  10   200   300  10  100  150  212 2510   
13.71  2219   12.12 291 
12    6   100  200  30  10   200   300  10  100  150  213 1706     
8.28 2137   10.73 -431 
13    6   200  300  10  10   600   800  10  300  400  221   277     
1.86    533     3.58 -256 
14    6   200  300  20  10   600   800  10  300  400  222   977     
3.28 1258     4.22 -281 
15    6   200  300  30  10   600   800  10  300  400  223 2280     
7.10 2384     7.42 -104 
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16    6   300  400  10  10 1200 1500  10  600  750  231     67     
0.31    405     1.92 -338 
17    6   300  400  20  10 1200 1500  10  600  750  232   343     
0.81    714     1.69 -371 
18    6   300  400  30  10 1200 1500  10  600  750  233   645     
1.10  1674     2.63 

-
1029 

19    7   100  200  10  10   200   300  10  100  150  311 2806   
24.38 2123   18.45 683 
20    7   100  200  20  10   200   300  10  100  150  312 3254   
14.68  2828   12.76 426 
21    7   100  200  30  10   200   300  10  100  150  313 2504   
11.28 2636   11.88 -132 
22    7   200  300  10  10   600   800  10  300  400  321   638     
3.41     784     4.20 -146 
23    7   200  300  20  10   600   800  10  300  400  322 2538     
7.25  3353     9.58 -815 
24    7   200  300  30  10   600   800  10  300  400  323 4915     
8.43  4789     8.21 126 
25    7   300  400  10  10 1200 1500  10  600  750  331   156     
0.64    569     2.33 -413 
26    7   300  400  20  10 1200 1500  10  600  750  332   935     
1.95 1480     3.09 -545 
27    7   300  400  30  10 1200 1500  10  600  750  333 2761     
3.24 4071     4.78   

-
1310 

sum                                                                                  43608             
48225 

-
4617 

Table 1   The Problem Descriptors and Results for 27 Test Cases 


