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Abstract

This paper analyses empirical performance of PANIC, a procedure
developed by Bai and Ng (2002) for unit root testing in presence of
contemporaneous cross-section correlation based on factor represen-
tation of the panel data set. The procedure is applied to 5 different
panels of typical dimensions in macroeconomic analysis. The major
finding is that in presence of excessively volatile series the three pro-
posed information criteria for detemining the number of factors give
very inconclusive results. Consequently, valid inference on the order
of integration is seriously questioned.

Povzetek
V tem članku je empirično testiran PANIC, procedura za testiranje

prisotnosti korena enote v panelnih podatkih ob prisotnosti sočasne
presečne korelacije, ki sta jo razvila Bai in Ng (2002) in temelji na fak-
torski dekompoziciji podatkov. Procedura je aplicirana na 5 različnih
panelov z dimenzijami, ki so običajne pri makroekonomski analizi.
Ključna ugotovite članka je, da ob prisotnosti zelo volatilnih serij v
panelu, trije predlagani informacijski kriteriji za določanje števila fak-
torjev dajejo zelo različne rezultate. Posledično postane zanesljivost
zaključkov o redu integriranosti spremenljivk zelo vprašljiva.

JEL codes:
Keywords: panel unit root testing, factor representation
Ključne besede: panelno testiranje korena enote, faktorska analiza
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1 Introduction

PANIC - a ”Panel Analysis of Non-Stationarity in Idiosyncratic and Com-
mon Components” is a procedure developed by Jushan Bai and Serena Ng
(2002) that uses a factor structure of large dimensional panels to develope a
new approach to univariate and panel unit-root testing. Besides providing
theoretical proofs for their main conclusions in the paper, Bai and Ng pro-
vide also some Monte-Carlo evidence on favorable size and power properties
of PANIC testing procedure.
The aim of this paper is to evaluate the performance of PANIC on some

additional examples of typical macro panel data: OECD data on real effective
exchange rates for 29 countries, OECD data on inflation rates for 32 coun-
tries, and a set of 29 industry-level price indexes for Slovenia. Results show
that, in spite of the appealing theoretical properties of PANIC, the reliability
of its empirical performance depends on the presence of excessively volatile
series in the estimation of the factors. Different authors have proposed two
different approaches to handling outliers: standardization and elimination
of outliers. Here I do not attempt to compare the outcomes under the two
strategies, the focus is rather on the issue of difficulties that series with rela-
tively high volatility, that is not uncommon in applied macro analysis, bring
into empirical applications of PANIC. This might imply that a particular fac-
tor structure of data that PANIC assumes cannot be empirically supported
in a number of real data examples. The usefulness of PANIC as a uniform
approach to univariate and panel unit root testing is decreased accordingly.

2 The Mechanics of PANIC

The main idea of PANIC is to exploit the factor structure of panel data to
devise panel unit root tests, and also univariate counterparts, with favorable
size and power properties. The power deficiencies of univariate unit root test
in finite time series are well documented. The goal of panel unit root test was
to increase the power of unit root tests by pooling observations across cross
sections. However, pooling is valid only if the assumption of no cross-section
correlation among units is satisfied. Banerjee at al. (2001) show how panel
unit root test become oversized when this assumption is violated.
A factor structure of the data exploits the contemporaneous correlation

between cross-section units to split the process into two parts: a common and
idiosyncratic component. In particular, Bai and Ng consider the following
static factor model:
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Xit = Dit + λ
0
iFt + eit. (1)

Dit is a polynomial trend function (a constant and a linear trend), Ft is a
r × 1 vector of common factors, and λi is the corresponding vector of factor
loadings. The error term eit is assumed to be largely idiosyncratic, while
λ
0
iFt represent the common components of the process whose dimension is
considerably smaller than N. Weak correlation between eit and ejt, ∀j 6= i,
is allowed, which qualifies this model as an approximate static factor model.
The pooling of idiosyncratic components eit , in order to investigate their

integration properties, is valid. Individual unit root test on small number of
common features (factors) then gives a combined evidence on the order of
integration of the whole process Xit. The common components and the id-
iosyncratic components (ICs) are allowed to be integrated of different orders.
If this is the case for an individual series Xit, usual unit root test can have
problems with determining the true order of integration, i.e. unit root test
can be oversized, while stationarity tests can lack power (Ng and Perron,
2001).
The crucial step to testing for the presence of a unit root in the common

and idiosyncratic components, which are both unobserved, is their consistent
estimation when it si not known a priori whether they are I(0) or I(1). Bai and
Ng (2001) show how this can be done by the method of principal components
on differenced data. Differencing is the key trick in the procedure as present
econometric technology does not allow for the consistent estimation of the
factors when idiosyncratic components are I(1). The estimates of factors and
idiosyncratic components are then obtained by re-integration. Large panel
dimensions are required for this; large N permits consistent estimation of the
factors whether they are stationary or not, while large T allows for the use
of appropriate large-sample theory in the derivation of the tests.
In the derivation of the PANIC procedure the data are assumed (1) to

admit a factor structure, and (2) factors and idiosyncratic components follow
an AR(1) process with serially uncorrelated errors: Fmt = αmFmt−1+umt, and
eit = ρieit−1 + εit. This simple structure led Bai and Ng ( 2001) to consider
the classical unit root test of Dickey and Fuller (1979). In real applications,
it si unlikely to find all series in a panel to follow a simple AR(1) process.
PANIC allows for weak dependence in umt and εit. With the true order of
error autocorrelation unknown, the ADF test can be used in accordance with
the results of Said and Dickey (1984), who show that the ADF test remains
valid provided the order of the augmented autoregressions, M, is chosen such
that M3/T → 0 as M and T → ∞. Hence, Bai and Ng (2001) claim that
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their main theorems remain valid also with weak serial correlation in umt and
εit.
Keeping in mind that the factors and idiosyncratic components are esti-

mated assuming a static factor structure, unit root testing with PANIC is
invalid if the true data are generated by a dynamic factor model. Indeed,
it is more likely to find panel data being consistent with a dynamic factor
model and not with the static one. As noted by Stock and Watson (1998),
when factor models are used for forecasting purposes the choice between the
two is an empirical issue. However, if a factor structure is used to devise
unit root test, this becomes a crucial issue. Estimated common components
are then not the true ones, which implies that if pooling of Xit for a unit
root test is not valid because of significant cross correlation, it remains so
also for pooling idiosyncratic components eit. If the possibility that also
lagged values of factors significantly affect Xit cannot be simply ruled out,
then the identified idiosyncratic components are not truly idiosyncratic and
could remain strongly correlated. In short, in order to justify the underlying
assumption of PANIC - static factor structure - a formal test for the pres-
ence of moving average components of factors in the model should also be
available. If factors entered the model in moving average form, the factors
have to be estimated using a methodology different from ordinary method of
principal components. Forni at al. (2000), for example, describe the estima-
tion procedure in this case. However, apart from the estimation issues, the
inference on the order of integration of the common and idiosyncratic com-
ponents would remain largely unaltered. The same type of ADF test could
be used for the individual ICs, and any of available panel unit root tests for
the pooled ICs. More importantly, given that the common components now
take the form of an infinite order AR process, the results of Said and Dickey
(1984) can be used for unit root testing provided that the finite order lag in
the test equation is chosen in accordance with the T dimension.

3 Estimation of the common components and
determining the number of factors

The literature presented in this paper considers three different methods for
the estimation of the common components - factors. As emphasized above,
PANIC is based on a static factor model, which allows for a simpler esti-
mation method than the methods required for the estimation of a dynamic
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factor models (see Stock and Watson, 1998; Forni et al., 2000).1 In static
form the factor model can be estimated by the method of principal compo-
nents. Let k denote the number of factors, then the (N × k) loading matrix
Λ, and the (T × k) matrix of common components F are obtained by solving
the following optimization problem

V (k) = min
Λ,F

(NT )−1
NX
i=1

TX
t=1

(Xit − λiFt)
2 (2)

subject to normalization Λ
0
Λ/N = Ik or F

0
F/T = Ik. Using the latter,

the estimated factor matrix, eF, is √T times the eigenvectors correspond-
ing to the k largest eigenvalues of XX

0
. The factor loadings are then ob-

tained as eΛ = eF 0
X/T. Alternatively, using the first normalization, bΛ can

be calculated as
√
N times the k largest eigenvectors corresponding to the k

largest eigenvalues of X
0
X. The factors are then estimated as bF = XbΛ/N.

Stock and Watson (1998) estimate the factor matrix using the normalization
F

0
F/T = Ik, and obtain the estimate of factor loadings by OLS regression

of Xit on eFt. Apart from computing convenience that depends on which
dimension, N or T , is smaller, the two approaches yield results that do not
differ when a factor model is used for unit root testing.
Special attention is devoted to the determination of the number of factors.

Some recent papers consider solutions to this problems for panels with non-
fixed dimensions. Forni at al (1998) note for fixed T and N → ∞ that the
number of factors can be asymptotically determined by observing the behav-
ior of recursively estimated eigenvalues ofX

0
X: first k (dynamic) eigenvalues

diverge to infinity while others stay bounded. In finite samples this indication
might not be useful. For this reason, they determine the number of factors
by considering a 5% threshold of variance explained by the ith factor.
Stock and Watson (1998) assume N,T →∞ with

√
N/T →∞ and esti-

mate the dimension of F using a criterion that minimizes the mean squared
forecast error in the model. A procedure for consistent estimation of the
number of factors, r ≤ k, that puts no restriction on the rate of convergence
of N and T has been recently proposed by Bai and Ng (2002). They propose
three different information criteria that minimize (2) with a penalty term de-
pending both on T and N . This procedure has been used also by Marcellino
et al. (2000). It is important to note that Monte Carlo evidence in Bai and

1Under suitable assumptions about eit, a dynamic factor model can be estimated by
ML using the Kalman Filter (Stock and Watson, 1998). This procedure if difficult with
non-balanced panels and large N. Forni et al. (2000) propose a more feasible approach to
estimation based on spectral decomposition of the panel.
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Ng (2002) shows that their procedure should yield quite consistent estimates
also for relatively small panels with N = 40, and even T = 50.
In this paper, special attention is devoted to difficulties we might en-

counter in applied work. In particular, the procedure of Bai and Ng (2002) for
the estimation of the dimension of F is underlying the procedure in PANIC.
Provided that the true number of factors is known, it is shown by Bai and Ng
(2001) that PANIC has very good size and power properties also for panels
with N = 20 and T = 100, which is very close to the dimension of data
sets I use in this paper. Such cross-section dimension is also very common in
macroeconomic analysis. As will be argued below, high volatility of few series
that is not uncommon in typical macro panel, causes the three information
criteria to give quite inconclusive results. Moreover, the estimated factors
instead of representing the common components can be in such cases quite
strongly associated with the most idiosyncratic variability. The problem is
less severe when the data are properly standardized; however, the three in-
formation criteria still show discrepancies in the estimated number of factors
that are incompatible with Monte Carlo evidence in Bai and Ng (2002). This
implies that PANIC crucially depends on the knowledge of the true number
of factors. The difficulties in the determination of this number, and lack of
strong evidence that estimated factors really represent the common compo-
nents in a panel with quite volatile series, decrease the usefulness of PANIC
for panel unit root testing.

4 Excessively volatile series

In empirical applications of factor models for time series analysis, a proper
handling of excessively volatile series is crucial. Since the factor estimation
procedure is the result of minimizing expression (2), it is evident that the
presence of some excessively volatile series will result in estimated factors that
”accommodate” this volatility. If estimated factors can still be perceived
as representing the common components of the data or not, becomes an
important issue.
In applications of Stock and Watson (1998) and Marcellino, Stock and

Watson (2000) the data are checked for outliers according to a selected mul-
tiplicator of the inter-quartile range. The data are then handled in two
different ways, first, by dropping the whole series, or second, by treating the
outlying observations as missing data. Consequently to the second strategy,
the EM algorithm for factor estimation in unbalanced panels has to be used.
Stock and Watson (1998) report that the two methods yield similar results
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in terms of forecasting performance of the model. While the two procedures
proposed by Stock and Watson seem very appealing for forecasting purposes,
their appropriateness for unit root testing can be seriously questioned. Drop-
ping a series from a panel leaves the question of the order of integration of
that series open. Eliminating some observations, on the other hand, effec-
tively changes the series of interest, which may again leave the question of
the order of integration of the original series unanswered. One posibility is
also to treat all outliers as breaks in the original series so that we are actu-
ally investigating the orfedr of integration of series with structural breaks.
However, in the examples used in this paper the number of outliers can be
so high that it is highly unlikely that they all represent structural breaks.
Forni et al. (2000), and Bai and Ng (2001) recommend a different ap-

proach: standardization of the data, without any argument being made,
however, on why this is necessary.2 In particular, the derivation of PANIC
procedure does not impose the necessity of data standardization. In em-
pirical applications, PANIC used on standardized or non-standardized data
gives quite different results.
As will be shown below, standardization in fact improves the empirical

performance of PANIC to some extent, but it is not necessarily sufficient. In
order to demonstrate how important standardization is, the results reported
below contain examples of panels with standardized and non-standardized
data that demonstrate how even different conclusions on the order of inte-
gration of some variables can be obtained in the two different cases.

5 Some examples of empirical applications of
PANIC

In this section I present some examples of how PANIC performs with real
data. In particular, I consider 5 different macro panels with monthly data
from 1992 to 2001. Each panel is considered twice; firstly with standardized
data (labeled with ”s”), and secondly with unstandardized data. The first,
labeled REER, consists of OECD data on real effective exchange rate series
for 29 countries. Used on this panel, PANIC will provide yet another test of
PPP hypothesis. The second, labeled πoecd,is a panel of OECD CPI inflation
data for 28 countries. This panel has in addition been expanded with the
data from the same source for 4 additional countries: Romania, Estonia,

2As required by identificetion restrictions, factors are assumed to be orthonormal in all
cases discussed here.
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Lithuania and Russian Federation (label πoecd (+4)). These countries have
exhibited in the period under analysis particularly high and volatile inflation
rates.
The fourth panel labeled πslo replicates to some extent the empirical ex-

ercise in Bai and Ng (2001). There the authors show PANIC results for a
panel of 21 industry level inflation rates for the US. Here I consider a sim-
ilar panel, consisting of 29 industry level inflation rates for Slovenia, which
exhibits more volatile industry level inflation rates. The results for these 4
panel are reported in Table 4. The results for the 5th panel will be briefly
discussed in the text. I refer to this panel as ”heterogeneous” panel as it
does not consist of data of only one type e.g. price indexes, exchange rates,
etc., but rather contains data on industrial production, real exchange rate,
inflation and short-term interest rates for 6 countries: Germany, United King-
dom, Sweden, Denmark, the Czech Republic, Hungary, Poland and Slovenia.
The aim of reporting the results for this panel also is twofold. First, panel
unit root testing in heterogenous panels is instructive since in macroeco-
nomic analysis data of only one type are rarely used. In particular, such a
panel could be used to test real and/or nominal convergence, business cycle
sychronization between two groups of countries, etc. Second, results show
that some of the problems with volatile series become even more serious if
heterogeneous data is used.

5.1 Negative sides of PANIC

The major challenge of applying PANIC on a typically sized macro panel can
be seen already from the first four lines of Table 1. The lines labeled IC1,
IC2 and IC3 correspond to the number of factors given by 3 information cri-
teria proposed by Bai and Ng (2002) for consistent estimation of the number
of factors. For all cases with non-standardized data the first two criteria,
IC1 and IC2, fail completely. For any choice of the maximum number of
factors, kmax, both IC1 and IC2 always choose kmax. Given that there is no
theory available to determine the proper choice of kmax,this represents a seri-
ous problem. With standardized data the criteria give different suggestions.
While the first two always choose the same number of factors, the third cri-
terion suggests zero factors in all cases, which would imply that all series are
idiosyncratic. In the heterogenous panel (see above for description), however,
the first two criteria again perform badly even with standardized data. In
this case kmax is always chosen, while IC3 gives a choice of 2.
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In subsequent analysis I have based my decision on the number of factors
on the results reported by the first two criteria for standardized data. In
addition, it was checked whether this was approximately in accordance with
the 10% limit share of total variation explained by eigenvectors corresponding
to the largest eigenvalues individually. The same choice on the number of
factors has been used for standardized and non-standardized data.
The order of integration of estimated factors is also conditional on stan-

dardization. With the exception of the real effective exchange rate panel,
the number of I(1) factors is always larger in non-standardized panels than
in standardized panels, a result that could be expected. In all three in-
flation panels the factors are shown to be stationary if standardization is
applied. With non-standardized data at least one factor becomes nonstation-
ary, which has an important consequence: every individual inflation series
becomes automatically I(1) by construction due to the presence of an I(1)
common component.
As expected, standardization also significantly increases the number of

series in a panel with explained variation attributed to the common compo-
nents (factors) larger than the explained variation attributed to the idiosyn-
cratic components (the line labeled Xit with σ2F > σ2e). This number more
than doubles on average and may even become four times as large in the
case of REER. This clearly reflects the fact that estimated factors become
heavily influenced by excessively volatile series, which is more pronounced
with non-standardized data.
For illustration, for non-standardized data is the ratio σ2F/σ

2
e very low for

a majority of the series, while it extremely high (exceeding 5 in all cases) for
Turkey, Mexico and Netherlands in the case of REER panel; Turkey, Greece,
Poland, Hungary and the Czech Republic for the smaller OECD inflation
panel, and the 4 subsequently added countries (Romania, Estonia, Lithuania
and Russian Federation) in the larger OECD inflation panel. These are all
countries with very high relative volatility in the corresponding panel.
It has also been checked whether allowing for a larger number of factors

results in estimated common components that capture the variability more
evenly across series. The answer is negative. For example, increasing the
number of factors from 3 to 7 in a larger OECD inflation panel adds also
Greece and Turkey (the two countries that have been standing out already in
a smaller panel) to the group of 4 countries with initially high ratio σ2F/σ

2
e;

however, the ratios for the initial 4 countries reach tremendous levels, for
Russia as high as 293. It is clear that in such cases the factors can be
associated more with few idiosyncratic components than with the common
components.
In order to illustrate how severe this problems can become when PANIC
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is used for making some economic conclusions, I have tracked conclusions
being made on the order of integration of German inflation. As reported in
the last line of Table 1 there is no uniform conclusion. Three cases indicate
that German inflation contains a unit root, but in the standardized larger
panel we would conclude that it is stationary.
In the standardized heterogeneous panel3 an even more confusing result

emerges. Given the difficulties with the determination of the number of fac-
tors described at the beginning of this section, I have performed the analysis
with r = 2 and r = 4 (both could be possible according to the ratio of eigen-
values). The first two factors are both I(0), and with r = 2 the German
idiosyncratic component is also I(0). This implies that German inflation is
I(0). However, with r = 4 the two additional factors are I(1). The 4th factor
is also very important for German series as it significantly increases its σ2F/σ

2
e

ratio. The idiosyncratic component of German inflation suddenly becomes
I(1), which would imply that German inflation is I(1) due to both common
and idiosyncratic component. It is worth emphasizing that this finding is ex-
tremely counter-intuitive: removing the influence of two I(1) factors results
in I(1) idiosyncratic component, which was previously shown to be I(0).

5.2 Positive sides of PANIC

If the problems with excessively volatile series could be analytically solved,
the qualities of the underlying idea of PANIC could prevail. To demonstrate
this, I assume away the problems with the determination of the number of
factors and interpret the results of unit root testing as if we have identified
the true factor structure of the data i.e. I assume that PANIC captures the
true data generating process.
Under this assumption, the advantages of PANIC over the most widely

used unit root test - the ADF test, or a more powerful DFGLS test become ev-
ident. For the REER panel where all three factors are highly non-stationary
this is perhaps not so evident (DFGLS never rejects the null of a unit root,
and ADF test does it only once); however it becomes so in the panels with
the presence of strong stationary factors. The ADF test missignals the order

3The results of unit root testing for this panel are available from the author upon
request. For compactness they have not been included in Table 1. Moreover, the estimated
factors were not able to capture what was the main purpose of applying PANIC to this
panel: different real and nominal trends in the group of four EU countries (Germany,
Denmark, the UK and Sweden), compared to four Accession countries (Hungary, the
Czech Republic, Poland and Slovenia). This fact is reflected in a low σ2F /σ

2
e ratio for all

series.
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of integration of individual series in 50 to 76% of the cases (see lines labeled
ADF test in Table 1). The DFGLS test performs much better, it missignals
in 25 to 35% of the cases, which is, however, still very high (see lines labeled
DFGLS test). It is worth emphasizing that apart from very few cases, these
are all rejections of the true null. This confirms the results of Ng and Per-
ron (2001) that univariate unit root tests tend to be over-sized if the series
consists of two components with different orders of integration.
Perhaps the most important advantage of PANIC is that it solves the

problem of size and power deficiencies of panel unit root tests when cross-
unit short-run correlation is present . Pooling of idiosyncratic component
is valid, and usual panel unit root test can be applied. Here the version
of Maddala and Wu (1999) is considered. The results show that while a
panel unit root test applied to the original series always leads to the correct
conclusion with standardized data, it fails to do so in 3 out of 4 cases (all 3
inflation panels) for non-standardized data. This polarity is perhaps only a
coincidence; however, the over-rejection, documented also by Banerjee et al.
(2001), is evident.
Pooling the idiosyncratic component gives, on the other hand, much bet-

ter results. The presence of stationary series is almost always correctly de-
tected. Wrong conclusion can be based on the two cases of REER panel (see
the line in Table 1 labeled Pooled test − eit), but here we have only 2 and
1 stationary idiosyncratic components in each panel respectively, such that
this finding could be also due to a relatively small sample.
Finally, it is worth mentioning that the caveat from section 3 applies

here. Pooling of estimated idiosyncratic components is truly valid only if the
static factor structure supports the true structure of the data, and if the true
number of factors is known. In other words, the advantages of PANIC become
evident only when we assume that the static factor structure underlying the
PANIC procedure correctly captures the true data generating process.

6 Conclusion

In a controlled experiment, with generated data, PANIC performs very well.
The true number of factors is correctly determined, and the true structure
of the data generatting process is well captured. With real data this is no
loner so. Two problems arise that are probably closely linked to the relative
volatility of the series in the panel. The first is the problem with determi-
nation of the number of factors in a typical macro panel with N around 30.
The criteria proposed by Bai and Ng (2002) for consistent estimation give
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very inconclusive results even with standardized data.
The second problem arises with the question how well do the estimated

factors capture the common components of the panel. It has been shown
that the factors can be heavily influenced by few excessively volatile series.
Standardization is recommended as a remedy in this case; however, the role
of standardization is theoretically not clear. Standardization is perhaps re-
quired to scale the variation of the data to the same level required for the
identification of the factors. But this should not be the reason as the factor
loadings adjust accordingly. In the opposite case the factor loadings can be
normalized to have unit variance for identification, which leaves the decom-
position into common and idiosyncratic part unchanged.
Both problems are very important when a factor structure is used for unit

root testing. The advantages of PANIC crucially depend on the correctness
of the decomposition into the common and idiosyncratic components, which
are both unobserved. The difficulties emerging in applied work point towards
considerable uncertainty with the true representation of the DGP.
A closely related issue is also the choice between a static or a dynamic

factor model. It would be preferable if the choice could be based on some
information criteria for the determination of the dimension of MA lag in the
common part of the panel.
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