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Abstract

This paper compiles a set of stylized facts on the evolution of �rm size and labor and total factor
productivity distributions during the process of transition. These facts are based on the data for all
Slovenian manufacturing �rms active between 1994 and 2003. Stylized picture of transition can be
summarized as follows. Initially, we can distinguish between two types of �rms: small and on average
more productive and large and on average less productive �rms. Removal of institutional restrictions
has spurred growth of small �rms and entry of new �rms on one hand and decline and exit of large
�rms on the other. These simultaneous shifts have transformed the shape of �rm size distribution
from bimodal into unimodal. While labor and total factor productivity distributions exhibit large
right-hand shifts and lower heterogeneity over time, �rm productivity rankings changed substantially.
Smaller �rms, which were initially more productive, exhibited lower productivity growth rates and
thus gradually lost their advantage. Commonly held view of transition as a process of reallocation of
resources from ine¢ cient state to e¢ cient private �rms is at odds with our results of aggregate labor
and total factor productivity decompositions. Almost half of aggregate labor productivity growth
can be explained by within �rm growth and the rest by reallocation. Our evidence suggests that
within �rm growth seems to be related to the process of technological catching up of less productive
large �rms. These stylized facts may give a wrong impression of transition being a deterministic
process, while it is not. The process is stochastic and thus similar to those found for established
market economies. Hence theoretical models of transition should re�ect deterministic features that we
outlined and preserve stochastic elements introduced in now standard models of industrial dynamics.

JEL codes: L11, L16, L60,
KeyWords: manufacturing, size, labor productivity, total factor productivity, catching up, distrib-

utions, transition.

1 Introduction

Firm size and productivity are tightly related in industrial organization literature. Theoretical models of
industrial dynamics that allow for heterogeneity in �rm productivity levels predict that more productive
�rms should also be larger (e.g. Jovanovic, 1982; Ericson and Pakes, 1995; Kortum and Klette, 2002;
Rossi-Hansberg and Wright, 2004), which is consistent with abundant empirical evidence (see surveys by
Caves, 1998; Bartelsman and Doms, 2000; Ahn, 2001). Besides productivity, there is a number of factors
that a¤ect �rm size distributions (FSD), ranging from preferences and production functions for di¤erent
products to �nancial, institutional and regulatory factors. For example, Cooley and Quadrini (2001)
and Cabral and Mata (2003) argue that �nancing constraints a¤ect both evolution and stationary FSD,
while Schivardi and Torrini (2001) argue that employment protection legislation has small, but noticeable
e¤ect on FSD in Italy. Distortions to FSD in market economies are, however, modest when compared
to distortions that were generated by institutional restrictions in ex-socialist countries. For example,
even ex-Yugoslavia, a disintegrated country with the most liberal institutional setup among all ex-socialist
countries, imposed e¤ective constraints on employment in private �rms. This and many other institutional
constraints combined with direct political interference in allocation of resources generated bimodal FSD
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(see Newberry and Kattuman, 1992; Vahcic and Petrin, 1989). Transition process removed many of these
binding constraints and triggered the process of restoration of positive relationship between �rm size and
productivity.
This paper studies the evolution of �rm size and productivity distributions during the process of

transition and our aim is to compile a set of facts that should motivate any realistic model of industrial
dynamics in transition. While during early transition, researchers built some theoretical models in order to
provide some guidance to governments in choosing the optimal speed of reforms (see Aghion and Blanchard,
1994; Castanheira and Roland, 2000), these models focused primarily on reallocation of production inputs
and outputs from ine¢ cient state �rms to e¢ cient state �rms, while assumed that productivity of private
and state �rms remained unchanged. In these models, small private �rms should grow, while large state
�rms should dissapear and size and productivity relationship would restore primarily through reallocation.
However, recent evidence surveyed in Djankov and Murrell (2002) shows that productivity growth was
substantial during transition process and one cannot only focus on reallocation in explaining shifts in FSD
and FPD, a point already made by Blanchard (1997). What are relative contributions of reallocation
and restructuring is an empirical issue that is addressed in this paper. In fact, our aim is to provide a
comprehensive overview of industrial dynamics during the process of transition. For that purpose, we use
the data for Slovenian manufacturing �rms active in the period 1994-2003. While Slovenia is the most
advanced transition country in terms of per capita income, we believe that qualitative features should be
very similar to those of other countries with less favorable initial conditions. Our main �ndings on FSD
can be summarized as follows.
First, over the course of transition the shape of FSD changed, from initially bimodal into unimodal.

In spite of this, FSD at the end 2003 cannot (yet) be described by any often used standard parametric
family of distributions, such as log-normal or generalized gamma. Second, the average size and dispersion
have both been decreasing monotonically. According to the legal classi�cation of size of �rms, the shares
of employees in micro, small and medium size �rms increased, while the share of employees in large �rms
decreased. Total number of �rms increased substantially, while the share of small �rms increased at the
expense of all other �rms. Third, using both non-parametric (transition matrices, stochastic kernels) and
parametric techniques, we observe both substantial persistence combined with important shifts in FSD .
While growth of �rms is naturally stochastic, the key shifts that transformed FSD are the following. Micro
and small �rms grow, while medium and large �rms reduce size. Net entry is also important, primarily
entry of micro and small �rms and exit of large �rms. Fourth, while exit of smaller �rms is more likely, in
terms of labor �ows these are much less important than exit of large �rms. Entering �rms are on average
smaller than surviving �rms, while hazard rates for these decline with age. Exiting �rms are smaller on
average, although in the early transition, the di¤erence in size was smaller, suggesting of strong exit of
large �rms in the early transition. Similarly, exit of new entrants in the early transition is smaller and
increases over time. Fifth, FSD of surviving and exiting entrants is not much di¤erent in a year of entry,
which con�rms results of Cabral and Mata (2003) for Portugal and suggests that it is not survival bias
that leads to shifts in FSD of surviving new �rms. Sixth, in line with non-parametric evidence, we �nd
a negative (and non-linear) relation between initial size and subsequent growth even after correcting for
survival bias, which is now a standard feature in the literature (see Evans, 1987 and Hall, 1987). We also
�nd that in the early transition, this relationship is more negative than in later transition.
The evolution of FPD is closely related to that of FSD with the following features. First, labor

and total factor productivity are both growing at high rates over the entire period. Growth in labor
productivity is only modestly explained by growth in capital intensity and thus a large part of labor
productivity growth is ascribed to total factor productivity. Second, according to Olley and Pakes (1996)
cross-sectional decomposition, we �nd that in the early transition more productive �rms did not employ
more disproportionately more workers and vice versa. However, by the end of transition period, this
has changed. Third, we �nd that larger �rms exhibit faster growth in productivity, which resulted in
change of productivity rankings for �rms in di¤erent size classes. While at the outset of transition,
micro �rms were the most productive ones, by the end of transition, large �rms took the lead. Fourth,
di¤erent decompositions of aggregate labor and total productivity growth show that within �rm growth
was just as important as reallocation, which is very similar to results for U.S. manufacturing �rms (Foster,
Haltiwanger and Krizan, 1998). We �nd that larger �rms contribute more to aggregate growth. For
smaller �rms, between e¤ect is particularly important, which suggests that smaller, more productive �rms
gained their employment share. We also �nd large and negative cross or covariance e¤ect, particularly
for large �rms, which implies that these �rms increased productivity by downsizing. Fifth, we �nd that
less productive �rms are more likely to exit. Thus, the average productivity of exiting �rms is lower than
that of surviving �rms. Similarly, entering �rms are less productive than surviving �rms. In relation to

2



this, we �nd that while surviving new �rms are more productive than exiting new �rms, surviving �rms
increase their productivity over subsequent period, which suggests that learning is much more important
for new �rms than survival bias. Sixth, we �nd that a large part of aggregate labor and total factor
productivity growth is generated in �rms that were initially lagging behind. While this evidence is subject
to survival bias, even after correcting for it, we �nd a negative relationship between initial productivity and
subsequent growth, which also suggest that learning or catching up of large �rms is of great importance
in explaining growth during transition process.
The paper is organized as follows. In the second section, we desribe the basic features of Slovenian

economy and provide an overview of the data. The third section contains the stylized facts on the evolution
of �rm size distributions, while in the fourth section, we provide evidence about the evolution of capital
intensity and labor and total factor productivity distributions. The last section concludes.

2 The data

2.1 Some facts on Slovenian economy

Recently, the accounting data for Slovenian manufacturing �rms has been used extensively. Some of the
more recent examples are Damijan et al. (2002), Hutchinson and Xavier (2003), Orazem and Vodopivec
(2003) and de Loecker and Konings (2004). The main reason for this is comprehensive coverage of �rms and
relatively high measurement quality of variables, especially when compared to other transition countries.1

Therefore, Slovenian economy does not need a lengthy introduction as it can be found in Orazem and
Vodopivec (2003). For the purpose of our analysis, it is useful to summarize its main macroeconomic
indicators and institutional features.
In 2003, the per capita income was around 70 percent of EU-15 average, which makes Slovenia the

most advanced transition country. The population is stable, around 2 million inhabitants, which makes
it a small economy. As part of enlarged EU, it is open to trade and total exports account for 2/3 of
gross domestic product. Our sample is available for the period between 1994 and 2003, which is a period
of stable, but gradually declining, growth and the average growth rate of GDP was 3.8 percent. The
employment dynamics is U-shaped, declining until 1997 and growing until 2001 and leveling o¤ since then.
In Table 1, we show aggregate statistics for the manufacturing sector for the period between 1994 and 2003.
The aggregate value added (in constant 1994 prices) has been gradually increasing at the average annual
growth rate of 7 percent. The aggregate employment has declined from 220 to 204 thousand workers, a
7.5 percent decline, while the aggregate capital (in constant 1994 prices) has increased by 7 percent, the
main increase being in the period between 2000 and 2003.
Until the collapse of socialism, the institutional system of Slovenia, until 1991 part of the former Yu-

goslavia, was characterized by social ownership, worker management of �rms, substantial political inter-
ference in �rm decisions on investment, employment, prices and wages. In order to meet these restrictions,
governement introduced a massive system of discretionary taxes and transfers. In addition, private �rms
were not allowed to employ more than 10 employees, which in�uenced the initial size distribution of �rms.
The distribution was bimodal, with modi of micro and large �rms. The small and medium size �rms
were largely missing, which Petrin and Vahcic (1989) graphically described as a "black hole" in the size
distribution. The main institutional change relevant for the evolution of size and productivity distribution
happened in 1988, when government allowed setting up of new �rms by introducing a Company Law. The
law was very much ine¤ective and in 1993, it was amended. These institutional changes freed institutional
constraints on entry of new �rms, capital allocation and growth of �rms. The law on privatization of state
�rms was passed in 1992, although privatization did not start until 1994. The main method of privatiza-
tion was distribution of vouchers which could be used in �rms that initiated the process of privatization.
The owners of privatized �rms are mainly insiders, while governemnt still plays important role through
state pension and endowment (restitution) funds. According to EBRD�s transition indicators, Slovenia
was a gradual and slower reformer than many less developed transition countries (EBRD, 2003). While the
main progress in price and trade liberalization was achieved before 1994, labor markets are still strongly
unionized and labor policies were the most restrictive of the formerly planned economies and all EU-15
countries but Portugal (Riboud et al., 2001).

1For example, the available manufacturing data for Czech Republic contain rounded estimates of employment, while for
countries such as Estonia, only a small fraction of all �rms are included in the data set.
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2.2 Description of the data set

Our empirical investigation is based on accounting data for all Slovene manufacturing �rms (NACE 2-
digit sectors 15-37) active in the period between 1994 and 2003, provided by the Slovenian Agency for
Public Evidence (CHECK). Although the data are also available for 1992 and 1993, extensive changes in
accounting standards, reporting rules and company law in 1993 make these earlier data incomparable. In
addition, high in�ation rates in this period makes the real data heavily distorted. Thus, by using the data
from 1994 onwards, we loose insight on dynamics during the period of output decline. Nevertheless, we
maintain that qualitative features of dynamics of early transition period can also be traced in our sample.
The total number of �rms in our data set is 9350, although we limit our attention only to 7218 �rms

for which data on employment, capital and value added are available and positive. The dynamics of
number of �rms that comply with this condition is summarized in Table 1. The total number of active
�rms increased from 3288 in 1994 to 4662 in 2003, while the total number of �rms that survived over the
entire period is 1917. The entry of new �rms was particularly active in the early years of our sample, but
gradually declined to rates found in other studies. Hence, the average entry rate2 was almost 12 percent,
a number comparable only to values for Portugal in the early eighties (Cable and Schwalbach, 1991),
but much higher than in other developed or developing countries. Cable and Schwalbach (1991) report
average annual entry rates around 7 percent for UK and US, while among developing countries Morocco
with 5 percent had the highest entry rates (Clerides, Lach and Tybout, 1998). Note that our entry rates
are much higher than those reported by de Loecker and Konings (2004), who also report entry rates for
Slovenian manufacturing. This is partly due to a surge in entry (and exit) rates in 2002 spurred by a
change in accounting standards and capital ravalorization rules, which resulted in extraordinarily large
simultaneous exit and entry rates. In addition, we also have slightly more restrictive de�nition of entry
and exit.3 The average exit rates have also started at lower values, around 5 percent and increased to
9 percent and leveled o¤ around 7 percent. The average exit rate is 8.4 percent, a number comparable
to Norway (8.7 percent) and lower than in Portugal (9.5 percent) in the eighties (Cable and Schwalbach,
1991), but much higher than those in developing countries. Clerides, Lach and Tybout (1998) report exit
rates for Morocco, Mexico and Colombia that are below 4 percent.

Table 1: Dynamics and aggregate characteristics of manufacturing �rms

Number of �rms All active �rms
Year All Entry Exit Survivors Employment Capital Value added
1994 3288 - - - 220,610 791 401
1995 4029 911 (0.22) 170 (0.05) 3118 235,813 814 427
1996 4246 554 (0.13) 337 (0.08) 3692 222,610 776 458
1997 4356 474 (0.10) 364 (0.08) 3882 214,317 805 521
1998 4406 410 (0.09) 360 (0.09) 3996 211,793 799 525
1999 4431 386 (0.09) 361 (0.08) 4045 205,320 800 574
2000 4446 337 (0.08) 322 (0.07) 4109 200,202 798 603
2001 4479 343 (0.08) 310 (0.07) 4136 201,898 815 635
2002 4616 788 (0.17) 650 (0.15) 3828 209,126 817 688
2003 4662 456 (0.10) 410 (0.09) 4206 204,212 837 729

Source: Author�s calculations.
Notes: i) The numbers refer to the end of each year.

ii) Capital and value added are given in constant 1994 bilion SIT.
iii) The entry and exit rates are given in parentheses. The entry rates are calculated relative to the number of
active �rms in the year of entry, while the exit rates are calculated relative to the number of active �rms in the

year prior to exit.

2The entry rate is de�ned as the number of entrants divided by the total number of active (entrants and continuing) �rms
in a given year; the exit rate is de�ned as the number of �rms exiting the market in a given year divided by the number of
active �rms in the previous year.

3The key di¤erence in results is in de�nition of an active �rm, for which we require positive employment, value added
and capital, while they only require positive employment. We do so in order to have consistent sample also for productivity
analysis, which cannot be done for �rms with negative value added and capital. Di¤erent de�nitions generate di¤erences
primarily for �rms that have negative value added in one year and are thus counted as permanent exit and entry. Although
there is a positive bias in entry and exit rates (these are 1 to 2 percentage points higher using our de�nition of an active
�rm), qualitative features of entry dynamics are preserved.
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All nominal variables (sales, value added, material costs and capital) that are used in analysis are
de�ated. Sales, value added and material costs are de�ated using two-digit NACE producer price indices,
while capital is de�ated using consumer price index. The di¤erence is a consequence of mandatory reval-
uation of assets using consumer price index until 2002.4 The calculation of the capital series in constant
prices for 2002 and 2003 requires only de�ation for the old capital to the base year, disregarding in�ation
in 2002 and 2003, while for investments we de�ate values for the whole cumulative in�ation. Since we
use price de�ators that are at best at two-digit NACE level and not �rm speci�c, within industry price
di¤erences are embodied in output and productivity measures. Prices can re�ect idiosyncratic demand
shifts and variation in market power rather than quality or productivity di¤erences between �rms. As a
consequence, the estimates of productivity may be misleading.

3 The evolution of �rm size distributions (FSD)

In this section, we analyze the dynamics of �rm size distributions by combining three di¤erent methods:
graphical method based on stochastic kernels, transition matrices and standard parametric estimation
techniques. First, we explore the evolution of shape of size distribution. Second, we look at transition
matrices which convey information on surviving �rms. Third, we explore relevance of entry and exit and
fourth, we look at relationships using parametric estimation methods.

3.1 The shape of FSD

In this section, we identify the �rst set of stylized facts that stems from the evolution of �rm size distri-
butions (FSD). We �rst discuss the transformation of shape of FSD during the transition process. In the
previous section, we noted that in ex-Yugoslavia, but also in other socialist countries, e¤ective contraints on
capital accumulation and employment growth were in place preventing small �rms to either enter or grow.
Petrin and Vahcic (1989) and Newbury and Kattuman (1992) document this fact for majority of transition
countries, which resulted in a bimodal FSD at the end of socialist period. In Figure 1, we plot FSD for
employment as a measure of size for three di¤erent time periods using the method of stochastic kernels.5

Even though transition process started already in 1988, the FSD for 1994 is still bimodal, although the
mass of small �rms is already large (see Figure 1 below). Over time, the shape of size distribution has
changed and by the end of 2003, the only remnant of bimodality is greater mass of larger �rms. Such
evolution can also be traced using measures of size, such as capital, sales or value added. In the interest
of brevity, the size distribution for log of capital is shown in Figure A1 in Appendix.
The FSD were often approximated by parametric distributions, in particular by lognormal, but also

Yule or Pareto distributions (e.g. Ijiri and Simon, 1964). Cabral and Mata (2003), however, show that log-
normality may have been a result of rather incomplete samples and FSD for all �rms are more skewed to
the right. They also suggest that a generalized gamma distribution may be a better parametric description
of FSD.6 Visual inspection indicates that FSD for Slovenian manufacturing cannot be approximated by
log-normal distribution. This is con�rmed by Jarque-Bera (JB) and Kolmogorov-Smirnov (KS) tests of
normality given in Table 2. There we also show the measures of dispersion (standard deviation, denoted
SD) asymmetry of distribution (skewness) and thickness of tails of distribution (kurtosis). Note that
dispersion has been declining, while measures of skewness and kurtosis exhibit less clear trend. The
reference values of skewness and kurtosis for the standard normal distribution are 0 and 3, respectively.
The reason for failure of normality test is asymmetricity (skewness to the right) of FSD, which is implied
by the values of skewness much above the reference values. We have also tried to �t the generalized
gamma distribution and provide parametric characterization of dynamics of FSD. However, the estimated
parameters for generalized gamma distribution are not close to those obtained by Cabral and Mata (2003)
and are thus omitted from the text.

4De Loecker and Konings (2004) use producer price indices also for capital. This, however, introduces bias in the real
values of capital.

5The method of stochastic kernels is convenient when total number of observations is not large. This nonparametric
method for plotting size distributions generates smooth graphs. The method evaluates each point of the estimated density
as a weighted sum of the data frequencies in the neighborhood of the point being estimated. In our case the weighting is
a normal (gaussian) density. The size of bandwidth around the point of evaluation is 0.45, which is used throughout this
paper. The larger is the bandwidth, the smoother is the estimated density. However, for our data, the qualitative features
of the data are largely independent of selected bandwidth.

6The generalized gamma distribution contains three parameters instead of two, where the �rst two are mean and standard
deviation and the third is a shape parameter. Note that this distribution nests normal distribution. Cabral and Mata (2003)
track surviving new �rms over time and �nd that with age shape appears more and more like lognormal.

5



Figure 1: Evolution of �rm size distribution
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Source: Author�s calculations.
Note: The data are smoothed using gaussian kernel and bandwidth 0.45.

Table 2: Summary statistics and normality tests for log of employment

Year SD Skewness Kurtosis JB (p) KS (p)
1994 1.98 0.78 2.49 371.9 (0.00) 0.15 (0.00)
1999 1.75 0.87 2.96 562.3 (0.00) 0.14 (0.00)
2003 1.67 0.79 2.99 492.0 (0.00) 0.11 (0.00)

Source: Author�s calculations.
Notes: i) JB denotes Jarque and Bera parametric test of normality, while KS denotes

ii) p denotes the level of statistical signi�cance.
iii) SD denotes standard deviation.

iv) The measures of skewness and kurtosis are standard third and fourth central moments.

While nonparametric plots of size distributions depict change in size distributions, they do not convey
much about the underlying shifts. For that purpose, Markov chain models are convenient. They have
been used fruitfully ever since Adelman (1958) analyzed �rm size distribution in the U.S. steel industry.
Some recent examples of use of Markov chain models are Konings (1995) for UK, Biesebroeck (2002) for
sub-Saharan African countries and Schivardi and Torrini (2003) for Italy.
Before we can use these models, we need to group �rms into size classes. Several di¤erent classi�cation

are used in the literature, for example, Konings (1995) grouped �rms in classes that were determined
relative to the average size in a given time period. However, this approach eliminates the average shift in
size and mainly focuses on shifts within size distributions. Hence, we use a classi�cation that speci�es size
classes in terms of absolute number of employees. In particular, we chose the standard legal classi�cation
as it allows us to make international comparisons. The legal classi�cation groups �rms into four size
classes: micro (1-9 employees), small (10-49), medium (50-249) and large �rms (250 and more).
Before we turn to analysis of transitions of �rms, we show in Table 3 the shifts in FSD. There we

show percentage shares of �rms in a given class relative to total for number of �rms and employees (in
parentheses). In line with the FSD shift depicted in Figure 1, the structure of �rms in 2003 is quite
di¤erent from that in 1994. The shares of micro, medium and large �rms have decreased, the share of
small �rms increased from 15 to 22 percent. While medium and large �rms were gradually losing their
importance, micro �rms initially gained, but lost in subsequent periods.
The shifts of employment shares are equally revealing. Micro and small �rms gained shares from

2.5 and 5.2 percent to 4.8 and 11.5 percent, respectively. Large �rms, on the other hand, lost almost
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ten percentage points, falling from a 65 percent share to 54 percent. Medium size �rms have gained
couple percentage points, although the dynamics is not monotone. Since there is a number of factors (e.g.
industrial structure, regulatory framework, taxation, size of a country, etc.) that determine the FSD in
a given country, we can gain only little by making inter-country comparisons. Nevertheless, the fact that
Slovenian manufacturing structure is far from that for EU-15 countries or Estonia, which is of similar size
as Slovenia is revealing of limitations to growth micro and small �rms. Micro and small �rms are still
under-represented in Slovenia, while the only country with fairly similar size structure is another transition
country - Romania.

Table 3: Firm size distribution in time and average �rm size

Year Micro Small Medium Large Average size
1994 63.5 (2.5) 14.7 (5.2) 15.0 (27.1) 6.7 (65.1) 67.1
1997 66.3 (3.8) 17.1 (7.6) 12.1 (28.9) 4.5 (59.7) 49.2
2000 65.1 (4.3) 19.2 (9.4) 11.7 (30.4) 4.0 (55.9) 45.0
2003 62.9 (4.8) 21.8 (11.5) 11.5 (29.5) 3.8 (54.2) 43.8
EU-15 - (13.1) - (21.6) - (23.4) - (41.9) -
Estonia - (7.9) - (24.0) - (34.6) - (33.5) -
Romania - (4.3) - (11.0) - (23.1) - (61.6) -

Source: Author�s calculations and Eurostat (2004).
Notes: i) The numbers in columns 2 to 5 denote percentage shares of �rms in respective size classes.

ii) In parentheses, there are shares of these �rms in total employment.
iii) Average size of �rms is calculated as unweighted average of employment.

iv) The data for EU, Romania and Estonia show the structure of employment in 2001.

In the Appendix, Table A1, we show FSD at a �ner grid of size classes, closely following those used
in Schivardi and Torrini (2003). We can see that the decline in micro �rms was largely due to decline
of share of one-employee �rms. While size classes that employ less than 50 employees have all increased
their importance, �rms employing more than 50 employees have all reduced their share in employment.
Similar conclusions can be drawn for employment shares, although the margin stands at 100 employees.
Note that �rms that employ more than 1000 workers su¤ered most in terms of employment.

3.2 The evolution of FSD analyzed with transition matrices

Now we turn to the estimation of transition matrices, which allow us to gain insights into underlying
shifts of FSD. The methodology of transition matrices is described in Appendix B. The shifts in FSD
may be a result of reallocation of labor between �rms of di¤erent productivity levels or due to growth
of productivity within existing �rms. Technology is the key factor emphasized in virtually all theoretical
models of industrial dynamics (see Jovanovic, 1982; Ericson and Pakes 1995, Rossi-Hansberg and Wright,
2004 etc.) There are, however, numerous other factors at work, such as �nancial constraints (Cooley and
Quadrini, 2001; Cabral and Mata, 2003), regulation or even business cycles. Since the transition process
is itself itself cyclical and consists of many simultaneous institutional changes, we should expect some
variation in transition matrices.
The transition probabilities depend on time span over which they are calculated. The shorter is the

di¤erence between periods over which we calculate them, the greater is persistence of size and the lower
are the exit rates. Moreover, the transition probabilities over a shorter period of time are more prone to
idiosyncratic phenomena. In order to avoid this, we shall follow the approach in the literature (see for
example Schivardi and Torrini, 2003) and average transition probabilities. The additional advantage of
this approach is that we avoid the problem of selection of initial year. Following Anderson and Goodman
(1957) we also calculate likelihood ratio tests for time invariance (homogeneity) of transition matrices. If
transition matrices are time invariant, calculation of ergodic size distribution is justi�ed.7

In Table 4, we provide the likelihood ratio tests of time homogeneity. We provide two sets of statistics
for deviations of individual transition matrices from three and nine year averages. Surprisingly, for most of
annual transition matrices, we cannot reject the hypothesis of homogeneity. However, transition matrices

7 In principle, we can calculate the ergodic distribution for any regular transition matrix (one with all elements positive).
However, whether this makes sense depends on time homogeneity of annual transition matrices.
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for 1994/95 and 2001/02 deviate substantially. The �rst year transition matrix is di¤erent due to con-
siderable entry and low exit rates, while the 2001/02 transition matrix is related to institutional changes
that we discussed above. Since deviations from three year averages are smaller and there are some time
speci�c features of transition matrices, we show the average transition matrices for three year periods.

Table 4: Tests of time homogeneity for transition matrices

Year 3 year 9 year
1994/95 55.7* 84.2*

1995/96 21.1 37.3*

1996/97 16.4 11.7
1997/98 13.8 18.5
1998/99 17.7 21.6
1999/00 22.8 38.1*

2000/01 77.6* 30.4
2001/02 121.7* 282.9*

2002/03 23.5 28.0

Source: Author�s calculations.
Notes: The value of theoretical �220 for � = 0:05 is 31.41.

Table 5 shows these average annual transition matrices over the following periods: 1994-1997, 1997-
2000 and 2000-2003. These matrices reveal several interesting features about the process of transition.
First, note that the diagonal elements of transition matrices, which correspond to probabilities that �rms
remain in the same size class also after a year, are above 85 percent, which is fairly large. High peristence
was observed also for UK, although size class de�nitions were di¤erent to ours and thus incomparable (see
Konings, 1995). Although we observe di¤erences in persistence rates for di¤erent size classes, they are
largely due to selected width of size classes. Intertemporal comparison, however, reveals that persistence
rates increased for larger �rms and decreased for mirco �rms, while the direction of change is not clear
for the remaining two classes. These changes of persistence rates are by de�nition re�ected also in o¤-
diagonal terms. A particular feature of transition process was relatively low productivity of large �rms,
which on one hand implied an opportunity for entry and growth of small �rms and downsizing of large
�rms. Table 1 we saw high entry and low exit rates in the early years of our sample. Table 5 now shows
that in the early transition exit rates were particularly low for micro �rms (only 6 percent in 1995) and
later increased, while probability that a micro �rm grew into a small �rm declined over time. On the other
hand, large �rms were more likely to shrink in the early transition period than in the subsequent periods.
This evidence is complementary to what we show below for productivity. Namely, labor and total factor
productivity of large �rms wer lagging behind that of smaller �rms, but by the end of our sample, ended
up being the most productive. Thus, there is less scope for downsizing of these �rms.
A feature that is regularly observed and has been found in virtually all studies of exit (see Dunne,

Samuelson and Roberts, 1988) is a negative relationship between exit rates and size. These are also
con�rmed in regression analysis of survival probabilities. At last, comparison of size structure of entering
�rms with size structure of surviving �rms given in Table 3, reveals that entering �rms are much smaller
than incumbents, having much smaller shares of medium and large �rms in FSD. Again, we do not
emphasize di¤erences in transition probabilities for the last period as they are subject to turnover that is
related to institutional changes that took place in 2002.
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Table 5: Three year average transition matrices

1994-1997
t� t� 1 Micro Small Medium Large Entry
Micro 88.2 4.8 0.3 0.1 82.8
Small 3.5 84.9 3.9 0.3 10.8
Medium 0.0 3.5 88.3 7.0 5.2
Large 0.0 0.1 1.6 88.8 1.2
Exit 8.2 6.7 5.9 3.7 -

1997-2000
t� t� 1 Micro Small Medium Large Entry
Micro 87.9 4.7 0.1 0.0 83.7
Small 2.9 86.9 3.1 0.0 10.4
Medium 0.0 3.0 89.6 5.6 4.9
Large 0.0 0.0 1.5 90.2 1.0
Exit 9.2 5.3 5.8 4.2 -

2000-2003
t� t� 1 Micro Small Medium Large Entry
Micro 84.8 6.3 0.3 0.2 76.9
Small 2.6 85.0 4.5 0.0 15.3
Medium 0.0 2.2 88.9 5.0 6.3
Large 0.0 0.0 1.2 91.5 1.5
Exit 12.6 6.5 5.2 3.3 -

Source: Author�s calculations.
Notes: Transition probabilities are given in percent.

Despite rejection of time invariance of annual transition matrices, the general message conveyed by a
long-term (9 year) transition matrix, given in Table 6, is more or less the same. Naturally, the persistence
rates are much lower for longer time span. Exit rates are also much higher, where these decrease with size,
although there is nonlinearity as micro �rms have lower exit rates than small �rms. The key �ows in shift
of underlying size distribution are related to growth of micro �rms into small �rms and a downward shift
of medium size and large �rms. Further, the entering �rms distribution is much more concentrated on the
lower end and thus helps to �ll the initial gap in the FSD. Transition matrix also reveals that micro �rms
have negligible probabality to grow into large �rm in a period of 9 years, while only modest share of small
�rms actually made it. The literature on �nancing constraints often emphasizes these as key limitations to
growth of small �rms (Cabral and Mata, 2003). Konings and Xavier (2003) compare �nancing constraints
for Slovenian and Belgium �rms and �nd that these are much more important in Slovenia.
In Table 6, we also calculate the stationary or ergodic FSD. Clearly, this is not yet justi�ed as there

were important shifts in annual transition matrices and entry and exit rates are not the same. Nevertheless,
the ergodic distribution made on the basis of a nine year transition matrix gives a reasonable prediction.
The share of small �rms should increase even further, while micro and large �rms should decrease. This
is in line with the observed trend of �lling the gap in the size distribution.

Table 6: Transition matrix 1994-2003

t� t� 9 Micro Small Medium Large Entry Ergodic
Micro 45.9 9.33 1.22 0.90 70.9 60.9
Small 10.9 35.8 9.18 0.90 19.6 25.0
Medium 0.72 7.78 46.3 18.1 7.87 11.5
Large 0.00 0.67 4.49 48.4 1.60 2.65
Exit 42.6 46.4 38.8 31.7 0 -

Source: Author�s calculations.

The transition probabilities have a limitation that they do not convey the relative importance of �ows
for �rms in di¤erent size classes. For example, while transition probabilities for shifts of �rms between
micro and small in both directions are fairly similar, this does not imply that these �ows cancel out. The
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di¤erence is initial shares of di¤erent size classes to which transition probabilities apply. In order to correct
for this, we calculate the probabilities relative to total number of �rms in 2003 and show them in Table 7
for the period 1994-2003. This table further shows that shifts in size distribution were to a large extent
related to growth of micro �rms into small �rms, entry process and also decline of medium and large �rms.

Table 7: Shifts in number of �rms 1994-2003

t� t� 9 Micro Small Medium Large Entry Total
Micro 958 (20.5) 49 (1.1) 6 (0.1) 2 (0.0) 1919 (41.2) 2980 (62.9)
Small 227 (4.9) 177 (3.8) 45 (1.0) 2 (0.0) 564 (12.1) 976 (21.8)
Medium 15 (0.3) 36 (0.8) 228 (4.9) 40 (0.9) 218 (4.7) 532 (11.5)
Large 0 (0.0) 2 (0.0) 23 (0.5) 107 (2.3) 44 (0.9) 176 (3.8)
Exit 889 (19.1) 220 (4.7) 192 (4.1) 70 (1.5) - 1370 (29.4)
Total 2089 (44.8) 484 (10.4) 492 (10.6) 221 (4.7) 2745 (58.9) -

Source: Author�s calculations.
Notes: Percentages in parentheses are calculated relative to end 2003 number of �rms, that is 4664.

In order to complement the evidence given so far, we also look at labor turnover. Table 8 contains
employment shifts over entire transition period relative to aggregate employment change for all active
�rms in manufacturing. In Table 1, we have summarized aggregate employment and the change over the
course of 9 years amounted to 16 thousand workers. This number is a denominator for labor �ows in Table
8.
The largest �ows of labor are related to declining share of large �rms, which was almost 2.6 times

the aggregate employment decline. This consists of both decline in employment of surviving �rms and
net entry. While medium size �rms also experienced net decline, some medium size �rms actually grew
into large �rms. Aggregate growth of employment in micro and small �rms was positive, both due to
growth of surviving �rms and net entry. The actual transition dynamics is in accord with predicted
transition dynamics, although the net aggregate e¤ect was still negative. This, however, may also be
a result of generous early retirement schemes, unemployment bene�ts and returns to participation in
informal economy (see Polanec, 2004).

Table 8: Relative labor �ows, 1994-2003

t� t� 9 Micro Small Medium Large Entry
Micro 0.06 -0.03 -0.04 -0.05 0.38
Small 0.19 0.05 -0.10 -0.03 0.78
Medium 0.07 0.12 -0.15 -0.48 1.38
Large 0.00 0.38 0.45 -1.16 1.39
Exit -0.14 -0.34 -1.42 -2.29 -

Source: Author�s calculations.
Notes: The shares are calculated relative to aggregate labor �ows.

3.3 Entry and exit

In previous analysis, we have seen that net entry process played important role in transition. We have
learned that entry rates were particularly high (low) in the early transition years and leveled o¤ in the later
transition. Table 9 compares the average size of surviving, entering and exiting �rms in three di¤erent
years: 1995, 1998 and 2001. The average employment of surviving �rms is much higher than the average
employment of both entering and exiting �rms in all these years. We further note that the average size of
all of these groups of �rms have been decreasing. This is again consistent with early exit of larger �rms,
which has decreased in the later transition. The decline in average size is, however, modest and dependent
on the choice of year.8

8 In 2002, the average entrants size is again 23 employees.
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Table 9: Size distribution of surviving and entering �rms

Year Type Micro Small Medium Large Average employment
1995 surviving 64.7 15.9 13.6 5.7 60.7
1995 entering 80.1 12.1 6.5 1.3 22.0
1995 exiting 66.8 16.0 14.5 2.7 34.1
1998 surviving 64.0 18.4 13.0 4.7 50.5
1998 entering 82.7 11.7 4.2 1.5 20.5
1998 exiting 78.1 12.7 7.2 1.9 21.4
2001 surviving 63.0 20.5 12.4 4.1 50.3
2001 entering 84.6 9.0 4.7 1.8 16.9
2001 exiting 81.3 13.1 4.8 0.9 14.5

Source: Author�s calculations.

A complete characterization of evolution of FSD requires also investigation of survival patterns of
entering �rms. It is now standard evidence that hazard rates are more or less monotonically declining
with age. For example, Baldwin (1995) has shown for Canadian manufacturing �rms that �rst year exit rate
is 10 percent and irregularly declines with age, while Mata et al. (1995) report hazard rates for Portugese
manufacturing �rms, which monotonically decline. These are 25, 16 and 13 percent hazard rates in the
�rst, second and third year after entry. The hazard rates in relation to age of �rms for cohorts entering
between 1995 and 1999 are shown in Table 10. Note �rst that these rates are somewhere in between those
reported for Canada and Portugal and more or less regularly decline with age. A transition speci�c pattern
can also be traced in hazard rates for di¤erent cohorts. We already now that entry rates were much higher
in the early transition, which is an indication of opportunity for entry of new �rms that would provide
new products. Table 10 shows that exit rate in the �rst year of existence, �rms in 1995 cohort were much
less likely to exit. While for later cohorts, �rst year hazard rates are not monotonically increasing, hazard
rates after two years con�rm this pattern and give indication of gradual market saturation. Consistent
with this hypothesis are also declining employment and output shares of younger cohorts, which are not
shown here.

Table 10: Hazard rates and age of entering �rms

Year n Age 1 2 3 4 5 6
1995 10.2 7.3 5.7 5.5 3.9 5.1
1996 15.3 6.4 6.2 4.6 4.6 -
1997 15.0 7.9 7.3 7.8 - -
1998 19.0 6.0 4.8 - - -
1999 14.2 8.8 - - - -

Source: Author�s own calculations.
Notes: Since 2002 exit rates are high due to institutional changes and are incomparable, we do not report these.

Dunne, Roberts and Samuelson (1988) and Cabral and Mata (2003) have also tracked FSD for surviving
entrants and found that average size of these �rms increases with age. Such evolution could be either a
result of growth of surviving �rms or selection bias. Dunne et al. (1989a) found correlation between initial
size of entrants and size after several periods, while Cabral and Mata (2003) have, however, compared
initial FSD for entrants that survived and those that exit and found negligible size advantage for surviving
entrants. The idea of dependence of size in given period to size at entry features in Jovanovic�s (1982)
model of industrial dynamics, where �rms�managers do not know their productivity and learn about it
using Bayesian updating techniques. A consequence of this assumption is serial dependence of size with
all previous sizes (which re�ect technology). Cabral and Mata (2003) conclude upon their evidence that
selection upon initial size is not determining the evolution of FSD. Instead they argue in favor of liquidity
constraints.
In Figure 2, we show evolution of FSD for 1995-97 cohorts of entrants, which exhibits a clear shift to the

right. We provide additional details for the 1995 cohort of entrants in Table 11, which shows that share of
micro �rms decreased , while shares of larger �rms increased. In addition, size distribution exhibits lower
dispersion and skewness. All of these features are also documented in Cabral and Mata (2003). Turning
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back to Figure 2, we con�rm the �nding by Cabral and Mata (2003) of negligible di¤erence in initial size
between all and only surviving entrants. Again, this can be interpreted against Jovanovic�s (1982) model of
industry dynamics and the key assumption of passive learning of managers about their �rms�productivity
levels. In the section exploring evolution of labor productivity distribution, we �nd that also productivity
levels of entrants that survive are not much di¤erent from all other �rms. Furthermore, we also �nd that
FSD for suriviving and exiting �rms, active in 1994 were not much di¤erent in 1994 (see Figure 3).

Figure 2: Size distribution and age of �rms
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Source: Author�s calculations.
Notes: 1995 denotes �rm size distribution at birth, 1999 and 2003 denote distributions of surviving �rms at age of

four and eight, respectively.

Table 11: Size distribution and age for �rms entering in 1995

Year Micro Small Medium Large Firms Mean St. Dev. Skewness Kurtosis
Entry 81.6 10.8 6.4 1.3 911 1.13 1.51 1.52 4.56
4 75.0 16.1 7.5 1.3 676 1.56 1.49 1.04 3.64
8 71.1 19.8 6.9 2.2 506 1.76 1.47 0.91 3.50

Source: Author�s calculations.
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Figure 3: Size distributions of surviving and exiting �rms in 1994
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At the end of this section, we conclude with evidence on relative contributions of di¤erent types of
�rms. While Figure 4 suggests that FSD of surviving and exiting �rms were not much di¤erent, bimodality
of FSD must be either a result of evolution of surviving �rms and entry of new �rms. Figure 4 compares
FSD in 2003 for surviving and entering �rms between 1994 and 2003. While we have already seen that
entrants are smaller on average, we can also see that surviving �rms have greater concentration of large
�rms than entrants. Thus disappearance of bimodality is partly caused by entry of new �rms.

Figure 4: Size distributions of surviving and entering �rms in 2003
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Nevertheless, the evolution of FSD for surviving �rms only, given in Figure 5, shows that bimodality
has also disappeared for surviving �rms. Combined with evidence on exiting �rms, this is primarily due
to evolution of FSD for surviving �rms and not by selection bias.
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Figure 5: Size distributions for surviving �rms
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3.4 Parametric analysis

Economists have often investigated a relationship between growth of �rms and initial size. The early
investigations concluded that there is no relationship between size and growth, which is known as a
law of proportionate e¤ect or Gibrat�s law (see Gibrat, 1931; Ijiri and Simon, 1964; Mans�eld, 1962).
However, more recent studies have concluded that even after correction for survival bias there is a negative
relationship between size and growth (see Evans, 1987; Hall, 1987; Dunne, Roberts and Samuelson; 1989).
This �nding is consistent with observation of Cabral and Mata (2003) that FSD is not quite log-normal,
which would have been the case if growth of �rms was indeed independent of initial size. This literature
has also observed a negative relationship between variance of growth rates and initial size. Thus, while
growth rates of smaller �rms are larger, they are also more variable.
In a very recent study, Konings and Xavier (2003) studied the relationship between �rm size and �rm

growth for a sample of Slovenian manufacturing �rms active in the period between 1994 and 1998 and also
found a negative relation. In this section, we investigate this relationship in line with approach outlined
by Evans (1987). A modi�ed equation that postulates the relationship between growth and size is

Sit+� = G(Sit; ait; yit)
�Siteit; (1)

where Sit and ait denote initial �rm size and age, and yit denotes labor productivity de�ned as a ratio
between value added and employment. Taking logarithm of (1) and dividing through by � , we obtain

lnSit+� � lnSit
�

= lnG(Sit; ait; yit) + "it;

where lnSit+��lnSit� denotes the average growth rate of �rm i between t and t+� . First order approximation
of lnG(Sit; Ait) is �0 + �1 lnSit + �2 ln ait + �3 ln yit; and estimation equation is

lnSit+� � lnSit
�

= �0 + �1 lnSit + �2 ln ait + �3 ln yit + "t: (2)

Since we do not observe growth rates for �rms that decided to exit, the average growth rate is subject
to sample selection bias. Dunne et. al. (1989) showed that exit rates are not independent of the right-hand
side variables in (2) and as a consequence the estimates obtained by OLS are biased. Table 5 con�rms this
for size of �rms as large �rms are less likely to exit, although the relationship between probability of exit
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and size was non-linear. As the relationship between size and exit is negative, we expect to see a negative
bias in the relationship between size and its subsequent growth. That is, we may conclude that small �rms
grow faster than large �rms not only due to actual negative relationship, but also due to self-selection
bias. Nevertheless, Konings and Xavier (2003) �nd no selection bias for the period from 1994-1998.
In order to eliminate potential bias in our estimates, we jointly estimate the equation for growth of

�rms (2) and survival equation (sample selection equation) using partial maximum likelihood model9 , as
suggested by Heckman (1979). This procedure is more e¢ cient than two stage least squares under the
assumption of joint normality of errors "t and �t in the selection equation

Pr(Survival = 1) = �0 + �1 lnSit + �2 ln ait + ln yit + �t: (3)

We further need to assume that error terms have zero mean and variances 1 and �, respectively. The
selection bias is only relevant in estimation of (2) when there is correlation between error terms, which we
denote by �. Therefore the key test of presence of selection bias is in � being di¤erent from 0.
Table 12 provides estimates of growth equations. Clearly, assumption of homoskedasticity is not justi-

�ed due to negative relationship between variance of growth rates and initial size (see Dunne et al., 1989).
Hence for inference we use heteroskedasticity-robust (Huber-White) standard errors. In addition, we also
allow for heterogeneity of growth rates and survival probability in di¤erent sectors and include sectoral
dummies for NACE 2 digit industries in both estimation equations.

Table 12: Relationship between growth, size and productivity

Equation Period
1994-1997 1997-2000 2000-2003

Growth (1) (2) (3) (4) (5) (6)
lnS0 -0.04 (-21.0)* -0.09 (-7.5)* -0.02 (-13.3)* -0.10 (-9.8)* -0.02 (-9.8)* -0.08 (-8.6)*
ln2 S0 - 0.01 (2.8)* - 0.03 (7.3)* - 0.02 (5.8)*
ln3 S0 - -10�3 (-1.5) - -2 10�2(-6.4)* - -2 10�2(-4.5)*
ln(yl )0 0.07 (10.6)* 0.08 (10.4)* 0.08 (9.6)* 0.06 (10.1)* 0.08 (10.6)* 0.07 (9.5)*
Cons -0.38 (-6.8)* -0.37 (-6.0)* -0.52 (-7.6)* -0.36 (-7.4)* -0.53 (-9.1)* -0.40 (-7.3)*
Survival
lnS0 -0.01 (-0.6) 0.14 (1.3) 0.05 (3.3)* 0.51 (6.5)* 0.15 (10.0)* 0.57 (7.5)*
ln2 S0 - -0.08 (-1.7) - -0.19 (-5.6)* - -0.17 (-4.8)*
ln3 S0 - 0.01 (1.8) - 0.02 (5.0)* - 0.03 (4.0)*
ln(yl )0 0.31 (8.8)* 0.31 (8.7)* 0.36 (10.5)� 0.35 (10.6)* 0.39 (12.4)* 0.35 (11.4)*
Cons -1.0 (3.6)* -1.0 (-3.6)* -1.8 (-6.9)* -1.8 (-7.3)* -2.7 (-11.0)* -2.5 (-10.6)*
� (s:e:) 0.22 (0.2) 0.24 (0.20) 0.48 (0.13) -0.04 (0.14) 0.32 (0.06) 0.21 (0.05)
�2(1) 1.66 (0.2) 1.3 (0.25) 9.3 (0.00)* 0.07 (0.80) 26.9 (0.00)* 15.6 (0.00)*
Log L -917.96 -897.60 -638.25 -596.38 -791.67 -738.05
N 3288 3288 4320 4320 4428 4428

Source: Author�s calculations.
Notes: i) Dummies for 2 digit NACE sectors included in both equations.

Asterisk denotes 5 percent signi�cance level.
The standard errors of estimates are heteroskedasticity robust, based on Huber-White estimator of variance.

In columns (1), (3) and (5) of Table 12, we show the estimates of equations (2) and (3) for three
subperiods. We �nd statistically signi�cant negative relationship between size and subsequent growth for
all subperiods. The coe¢ cient for initial size is twice as large (in absolute terms) for the early transition
period, an indication of larger growth di¤erential between small and large �rms. This is in line with many
theoretical contexts, where less competition implies faster growth rates for relatively small �rms. In line
with our expectations, the results also suggest that initially more productive �rms grew faster than less
productive. In columns (2), (4) and (6), we have included higher order terms for initial size and con�rmed

9Note that the reason why we cannot perform full conditional maximum likelihood model is that we can observe the
average growth of �rms,

lnSit+��lnSit
�

; only for �rms that survive. Thus, while we can use full the full density of Survival
given conditioning variables, we can only use the density for average growth when Survival = 1. This approach has an
advantage over that used by Dunne, Roberts and Samuelson (1989) as it avoids arbitrary assumption of growth -1 for �rms
that exit in calculation of average response.
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results by others. There is a nonlinear relationship between growth and size, although always monotone.
The results for labor productivitity are robust to inclusion of these higher order terms.
The results in the lower part of columns (1), (3) and (5) con�rm the importance of initial size as a

determinant of survival. For the periods 1997-2000 and 2000-2003, we �nd that larger �rms are more
likely to survive. On the other hand, for the early transition process, we �nd a negative, but statistically
signi�cant sign. The �2 test for hypothesis of no survivor bias, � = 0; is also rejected for this early period,
which suggests that probability of exit for large �rms was just as high as for small �rms. This �nding,
however, contrasts that of Tables 5 and 6 above, where we have shown that a negative relationship can
be found for all subperiods. Nevertheless, we have found that smaller �rms are increasingly likely to exit
over time and in the early transition these rates were lower and much closer to those for larger �rms. The
solution to these puzzling results may be in non-linear relationship between probability of survival and
size. Therefore, we show results with higher order terms in columns (2), (4) and (6). Note that these terms
are highly statistically signi�cant for the later transition periods. Again, we �nd that none of right-hand
side variables are signi�cant for the early period. Nevertheless, plotting the third order polynomial for this
early period shows that there is indeed weak relationship between survival and size for employment below
150 workers, while above that the relationship is strongly positive. This �nding is more or less consistent
with results stemming from transition matrices in Table 5. In all estimated survival equations, we also
include initial labor productivity. We �nd that more productive �rms are more likely to survive, which is
across all time periods.
Note that since we do not have information on age of �rms that have entered prior to 1994, we did

include age in the estimation equations so far. Hence, we estimate equations (2) and (3) for new �rms
only for the period 2000-2003. Table 13 shows that older �rms are growing in size with lower rates, while
their survival is more likely. However, this last result is not very robust as inclusion of higher order terms
renders it statistically insigni�cant. Note also, that all the remaining coe¢ cients that are common to
Tables 12 and 13 are consistent both in direction of relationship and size.
In order to relate these results to theoretical models, note that age is only relevant in Jovanovic�s (1982)

model, while in the model of Ericson and Pakes (1995), age is irrelevant for subsequent growth. This
consistency with Jovanovic model should not, however, be interpreted as con�rmation of passive learning
model as there are other reasons why age could be relevant for growth in size. A simpler hypothesis not
related to Bayesian updating, but also consistent with relationship between growth and age may be already
learning by doing.
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Table 13: Relationship between growth, size, age and productivity

Equation
Growth (1) (2)
lnSit -0.02 (-5.9)* -0.08 (-4.6)*
(lnSit)2 - 0.03 (2.8)*
(lnSit)3 - -0.003 (-2.1)*
ln yl 0.07 (8.6)* 0.07 (8.3)*
ln a -0.02 (-2.7)* -0.02 (-2.3)*
Cons -0.40 (-6.3)* -0.42 (-5.6)*
Survival
lnSit 0.10 (4.0)* 0.65 (4.6)*
(lnSit)2 - -0.24 (-3.24)*
(lnSit)3 - 0.03 (2.6)*
ln yl 0.38 (7.4)* 0.37 (7.2)*
ln a 0.12 (2.0)* 0.09 (1.5)
Cons -2.63 (-6.8)* -2.74 (-7.0)*
� (s:e:) 0.13 (0.04) 0.24 (0.14)
�2(1) 8.00 (0.005)* 2.72 (0.10)
Log L -327.92 -307.00
N 1669 1669

Source: Author�s calculations.
Notes: i) Dummies for 2 digit NACE sectors included in both equations.

Asterisk denotes 5 percent signi�cance level.
The standard errors of estimates are heteroskedasticity robust, based on Huber-White estimator of variance.

4 The evolution of labor productivity

Virtually all theoretical models of industrial dynamics predict that FSD should re�ect primarily �rm
productivity distribution (see Jovanovic, 1982; Ericson and Pakes, 1995; Klette and Kortum, 2002; Rossi-
Hansberg and Wright, 2004), although in reality many other factors, such as �nancial constraints, insti-
tutions and regulations, are also important. Restrictions imposed on �rm behavior during socialism and
corresponding bimodal size distribution is the best example of how institutions and regulations can dis-
connect this correspondence between size and productivity. On the contrary, removal of these restrictions
should restore this relationship. Hence, in this section, we explore the dynamics of labor productivity dis-
tributions and relate it to the dynamics of size and underlying factors of growth, such as capital deepening
and total factor productivity catch up.

4.1 Basic statistics on labor productivity

Figure 6 below shows the evolution of distribution for logarithm of labor productivity, de�ned as a ratio
between value added and total employment, for all active �rms.10 Note �rst substantial heterogeneity
in labor productivity of �rms, which is a well established fact also for all other countries (see survey
in Bartelsman and Doms, 2000). More importantly, Figure 6 shows that labor productivity has been
gradually increasing over the entire transition period.

10 In fact, the data are normalized numbers of employees, corrected for the number of hours worked. Thus, used measure
of productivity is close to labor productivity per hour worked (apart from scale adjustment).
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Figure 6: Evolution of labor productivity distribution
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Notes: 1 The labor productivity distributions are calculated using gaussian stochastic kernels with smoothing

parameter equal to 0.45.

Tables 14 and 15 provide some descriptive statistics on the evolution of labor productivity distribution.
Table 14 shows that the average logarithm of labor productivity increased by almost 0.60, while dispersion
has decreased. There is an increase in skewness in direction of higher concentration of below average
productivity �rms and an increase in thickness of tails. The values for standard measures of skewness
and kurtosis suggest that the bell-shaped densities do not belong to normal distributions, which is also
con�rmed by omitted normality tests.

Table 14: Descriptive statistics for labor productivity in 1994 and 2003

Statistic n Year 1994 2003
Mean 7.27 7.86

Standard Deviation 0.91 0.76
Skewness -0.52 -0.98
Kurtosis 5.85 11.3
p10 6.24 7.04
p25 6.80 7.46
p50 7.28 7.87
p75 7.79 8.28
p90 8.29 8.71

Source: Author�s calculations.

Table 15 summarizes evolution of average and aggregate labor productivity in time, expressed in
constant 1994 prices, where these two productivity measures di¤er in the choice of weights. In calculation
of the average labor productivity, we use equal weights for all �rms and in calculation of the aggregate labor
productivity, we use employment shares as weights. A cross-sectional decomposition of aggregate labor
productivity, proposed by Olley and Pakes (1996), relates these two measures and shows whether economic
activity (here measured by employment) is disproportionately located in high productivity plants. This
decomposition for the period t can be written as follows

yt = �yt +
X

i2Active
(�it � ��t)(yit � �yt); (4)
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where yt and �yt denote aggregate and average labor productivity, respectively, yit and �it denote labor
productivity and labor share in �rm i, respectively and ��t denotes the average labor share. If di¤erence
between aggregate and average labor productivity is positive, the cross term is also positive, implying that
�rms with above average productivity employ disproportionately more workers and vice versa.
Turning now to results, Table 15 reveals that the average labor productivity exceeded the aggregate

labor productivity in all years but 2003. In 1994, the average labor productivity exceeded the aggregate
labor productivity by as much as 18 percent. Consequently, the cross product term in (4) is negative, which
suggests that labor was disproportionately allocated in less productive �rms.11 However, this di¤erence
has been decreasing gradually and in 2003 the rankings reversed. Therefore, the cross-sectional allocation
of employment (and gross output) is more and more in line with productivity.
The evolution of this change is re�ected in the last four columns of Table 15, which contain the

aggregate labor productivity for �rms in di¤erent size classes. In the early transition years, larger �rms
were still less productive than smaller �rms and combined with larger employment shares for larger �rms
this resulted in average labor productivity exceeding aggregate labor productivity. However, faster growth
of productivity in larger �rms has caused that the aggregate labor productivity exceeds the average labor
productivity in 2003. Note that the rankings of �rms in di¤erent size classes according to the aggregate
labor productivity in 2003 is still di¤erent from that observed in majority of European countries12 (see
Eurostat, 2004), where larger �rms are on average more productive. Nevertheless, if the growth rates
of the aggregate labor productivity of larger �rms continues to exceed the growth rates in smaller �rms,
such rankings should be soon achieved. Note that in parentheses of the last four columns of Table 15,
we also show labor productivities relative to average 2 digit NACE sectors in order to eliminate potential
structural shifts. However, the dynamics of relative labor productivity is in line with that for absolute
values, which con�rms described patterns.

Table 15: Evolution of labor productivity
[in thousand SIT, constant base in 1994]

Average1 Aggregate2 (Relative3)
Year All (S.D.4) All Micro Small Medium Large
1994 2153 (2890) 1818 2262 (1.06) 1889 (0.94) 1687 (0.84) 1848 (0.87)
1995 2147 (2641) 1808 2244 (1.04) 1958 (0.96) 1713 (0.85) 1825 (0.88)
1996 2359 (2860) 2057 2412 (1.02) 2320 (1.03) 1942 (0.87) 2095 (0.88)
1997 2670 (3791) 2430 2779 (1.03) 2506 (0.99) 2183 (0.85) 2539 (0.92)
1998 2748 (4587) 2480 2768 (1.03) 2664 (1.02) 2233 (0.83) 2594 (0.92)
1999 2983 (3310) 2794 3104 (1.02) 2908 (1.03) 2389 (0.84) 2979 (0.97)
2000 3067 (3672) 3010 3154 (1.01) 3128 (1.05) 2558 (0.87) 3226 (0.99)
2001 3184 (3804) 3145 3308 (1.01) 3236 (1.02) 2739 (0.90) 3337 (0.98)
2002 3337 (4525) 3290 3379 (1.01) 3166 (1.01) 2891 (0.92) 3553 (1.04)
2003 3528 (4770) 3570 3559 (1.02) 3353 (0.99) 3060 (0.92) 3893 (1.02)

Aver. growth 5.64 7.79 5.16 6.58 6.84 8.63

Source: Author�s calculations.
Notes: 1 The average value added per employee is calculated as a simple (unweighted) average of individual

productivities.
2 The aggregate value added per employee is calculated as weighted average of individual productivities, where

weights used are respective labor shares.
3 Relative labor productivity is calculated as an unweighted average of ratios of �rms�labor productivities and

their sectoral (2 digit Nace) unweighted averages.
4 Standard deviations of labor productivity.

11Note that we could calculate the aggregate labor productivity also using gross output shares instead of labor shares.
In that case aggregate labor productivity exceeded average labor productivity in all years and the di¤erence has been
increasing, suggesting that more productive �rms had ever increasing share in aggregate sales. Although initial values
suggest disproportional allocation of output in more productive �rms, which is contrary to results with labor productivity,
the change in allocation of output is in line with that of labor.
12Also for transition countries like Czech Republic, Hungary and Estonia, rankings in productivity are in line with size

rankings. The only exception is Lithuania, where small �rms are the least productive of all.
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4.1.1 Decomposition of labor productivity growth

So far we have established that larger �rms grow faster, which leads to correspondence between productivity
and size rankings. In the industrial organization literature, authors proposed a variety of decompositions
of aggregate (labor or total factor) productivity growth (see Baily, Hulten and Campbell, 1992; Grilliches
and Regev, 1995; Olley and Pakes, 1996 and Foster, Haltiwanger and Krizan, 1998). These decompositions
allow one to understand how growth in productivity has come about. Following Foster, Haltiwanger and
Krizan (1998, henceforth FHK), we use two decompositions proposed by FHK and Griliches and Regev
(1995, henceforth GR) as both of these have advantages and disadvantages. Before we turn to results, we
shortly outline these methods.
The decomposition proposed by FHK is a modi�cation of a method by Baily, Hulten and Campbell

(1992).13 The basic equation for a change in labor productivity is the following14

yt � yt�� =
X
i2S
(�it�� (yit � yit�� ) +

X
i2S
(�it � �it�� )(yit�� � yt�� ) +

+
X
i2S
(�it � �it�� )(yit � yit�� ) +

X
i2E

�it(yit � yt�� )�
X
i2X

�it�� (yit�� � yt�� ); (5)

where yt � yt�� denotes the cumulative change in labor productivity over a period � , yt and yit denote
aggregate and individual labor productivity, respectively, and �it denotes labor or gross output share of
�rm i. S, E and X denote sets of surviving, entering and exiting �rms, respectively.
The �rst term of the right-hand side of equation (5) is a "within component" and measures the contri-

bution of changes in labor productivity weighted by the �xed initial shares in the aggregate employment
(or gross output). The second term is a "between component" and measures the contribution of changing
shares in the aggregate employment (or output), weighted by the di¤erence between initial individual and
initial aggregate labor productivity. Thus, an increase in its share contributes positively to aggregate
productivity growth only if the �rm has higher than initial aggregate labor productivity for the entire
manufacturing. The third term is a "cross or covariance component", which measures the covariance be-
tween the changes in employment (or output) shares and the changes in the labor productivity. This term
is positive if employment and productivity changes move in the same direction and vice versa. The fourth
term measures the contribution of entering �rms and the �fth term the contribution of exiting �rms. Note
that these last two terms are positive only if labor productivities of these �rms exceed the initial aggregate
labor productivity.
FHK emphasize two important features that distinguish their decomposition from others. First, their

decomposition treats surviving, entering and exiting �rms in an integrated manner and second, it separates
within and between e¤ects from cross or covariance e¤ects. Alternatively, GR decomposition uses the
average labor (or gross output) shares as weights in calculation of within component and thus it partly
re�ects also the cross e¤ect. Hence, FHK prefer their method, although they admit that it su¤ers when
data are plagued by measurement errors, particularly for employment.
The GR decomposition has the following structure

yt � yt�� =
X
i2S

��i(yit � yit�� ) +
X
i2S
(�yi � �y)(�it � �it�� ) + (6)

+
X
i2E

�it(yit � �y)�
X
i2X

�it�� (yit�� � �y);

where

��i =
�it + �it��

2
;

�yi =
yit + yit��

2
;

�y =
yt + yt��

2
:

This decomposition omits the cross or covariance term and thus contains only four terms. Although the
�rst and the second terms are still named within and between e¤ects, they partly re�ect what in FHK

13Baily, Hulten and Campbell (1992) consider a decomposition, where second and third terms are summed together, while
the last two terms do not subtract initial aggregate productivity from initial individual productivity.
14Note that this decomposition can and will be used for decomposition of change in total factor productivity.
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decomposition is the cross term. The "within" e¤ect in (6) is calculated as a weighted sum of changes of
labor productivity with the weights equal to the average labor (or output) shares. The "between" e¤ect is
calculated as a sum of labor share shifts weighted by di¤erences between (time) averages of individual and
aggregate productivity. In line with the FHK decomposition, entry and exit have a positive contribution
only if productivity is higher than the time average of aggregate productivity. The fact that both within
and between e¤ects partly re�ect the cross e¤ect is the main disadvantage of this method. On the other
hand, the results according to this decomposition are far less prone to measurement errors in relation to
the choice of either labor or output weights.
Table 16 provides the results of FHK and GR decompositions for aggregate labor productivity growth

using both labor and output weights for three subperiods. The key results can be summarized as follows.
First, the average annual aggregate labor productivity growth is declining over time, a fact consistent also
with declining growth rates for Slovenian GDP per capita. Second, the contribution of within e¤ect varies
across time, decompositions and weights, although its contribution is never lower than 48 percent. The
large within component indicates that restructuring through within �rm growth is just as important mode
of labor productivity growth as reallocation (if not more), which refutes the early description of transition
primarily as a process of reallocation. Third, the within and between components obtained with FHK
decomposition are much larger when labor shares are used as weights as opposed to output weights. FHK
themselves have found a similar pattern and partly ascribed it to mismeasurement of labor. However,
this di¤erence in within and between components is related to di¤erences in measured cross component,
which contains important information. Namely, a negative cross component with labor weights points at
negative correlation between growth in labor productivity and employment growth, while a positive cross
component with output weights suggests that growth in labor productivity coincided with growth in sales.
The transition period can thus be characterized by downsizing in terms of employment and growth of
sales (although not in the early transition). Fourth, the contribution of net entry process ranges between
5 and 25 percent, with some indicative time patterns. The contribution of entrants is declining over time,
especially when output weights are used. This implies that relative productivity of entrants when compared
to initial aggregate productivity has been declining and/or that their size has been decreasing, which can
be intepreted as decreasing opportunity for entrants over time or markets saturation. The patterns for
exiting �rms are less consistent over time. Fifth, the results obtained by GR decomposition are qualitatively
similar as the share of within component exceeded 50 percent of aggregate productivity growth. We also
con�rm FHK conjecture that GR decomposition is more robust to the choice of weights due to lower
sensitivity to measurement errors. For the sake of brevity and qualitatively consistent estimates across the
methods, in what follows we only show the results obtained by FHK decomposition.

Table 16: FHK and GR decompositions of aggregate productivity growth, 1994-2003

FHK, Labor weights
Growth rate1 Within Between Cross Exit Entry

1994-1997 10.4 0.932 0.29 -0.35 0.11 0.03
1997-2000 7.05 0.72 0.45 -0.38 0.16 0.05
2000-2003 5.81 0.97 0.23 -0.26 0.14 -0.09

FHK, Output weights
Growth rate Within Between Cross Exit Entry

1994-1997 11.1 0.64 0.12 0.02 0.07 0.15
1997-2000 7.04 0.48 -0.04 0.31 0.13 0.12
2000-2003 6.99 0.53 0.06 0.35 0.04 0.02

GR, Labor weights
Growth rate Within Between Exit Entry

1994-1997 10.4 0.75 0.12 0.17 -0.04
1997-2000 7.05 0.54 0.24 0.21 0.01
2000-2003 5.81 0.85 0.12 0.20 -0.16

GR, Output weights
Growth rate Within Between Exit Entry

1994-1997 11.1 0.66 0.13 0.12 0.09
1997-2000 7.04 0.62 0.13 0.18 0.08
2000-2003 6.99 0.73 0.22 0.09 -0.04

Source: Author�s own calculations.
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Notes: 1 The average (annual) aggregate labor productivity growth rate.
2 The share in the average aggregate labor productivity growth rate.

Next question that we address is on the relative contribution to the aggregate labor productivity growth
of �rms in di¤erent size classes. We tackle this issue by decomposing the aggregate labor productivity for
the period 1994-2003 and using the FHK decompostion with both labor and output weights. These results
are summarized in Table 17. The contribution of within �rm growth to the growth of aggregate labor
productivity is either 56 or 70 percent with output and labor weights, respectively. Surprisingly, these
values are remarkably similar to those obtained by FHK for U.S. manufacturing for 1977-87, who report
48 and 70 percent.15 That is, as pointed out in introduction, reallocation was expected to be much more
important in the early transition literature. The rankings of contributions of �rms in di¤erent size classes
(the last columns in panels) are in line with size, although contributions of micro and small �rms are more
than proportional to their employment shares. Note that within �rm growth of medium and large �rms
are the largest individual contributions to aggregate growth, which now also explains that restructuring of
larger �rms played the key role in productivity growth of large �rms. While the remaining results follow
these lines, note that cross component is again negative when labor weights are used both for medium and
large �rms, which implies that growth of productivity was partly generated by downsizing. On the other
hand, with output weights, cross component is positive for these �rms, which again suggests that growth
in productivity was also achieved by increases in sales. Note relatively large between components for micro
and small �rms, which hints at growth of employment and sales in initially more productive �rms. The
contributions of entry and exit of �rms reveal that �rms that medium and large �rms that exit contribute
positively to aggregate productivity as their initial productivity was below average. The contribution of
entering �rms is larger in larger �rms. In conclusion, the process of aggregate labor productivity growth
can be described as a process dominated by larger �rms as suggested in Table 15. Nevertheless, small and
micro �rms have been growing, particularly more productive ones.

Table 17: FHK decomposition of aggregate productivity growth, size classes

Labor weights
Within Between Cross Exit Entry Total

Micro 0.011 0.03 0.00 0.00 0.03 0.08
Small 0.02 0.06 -0.01 0.00 0.05 0.11
Medium 0.21 0.01 -0.06 0.03 0.06 0.24
Large 0.47 0.05 -0.06 0.02 0.10 0.57
Total 0.70 0.15 -0.14 0.06 0.23 1.00

Output weights
Within Between Cross Exit Entry Total

Micro 0.00 0.01 0.02 -0.02 0.08 0.10
Small 0.01 0.04 -0.01 -0.01 0.06 0.10
Medium 0.13 -0.02 0.02 0.00 0.05 0.18
Large 0.42 -0.01 0.10 -0.01 0.11 0.62
Total 0.56 0.03 0.14 -0.04 0.30 1.00

Source: Author�s calculations.
Notes: 1 A share in change of aggregate value added.per employee.

From a perspective of building a theory of transition it is important to provide some additional stylized
facts on labor productivity distributions of di¤erent types of �rms. First, Figure 7 compares labor produc-
tivity distributions of exiting and surviving �rms that were active in 1994 and of entering and surviving
�rms active in 2003. The labor productivity of exiting �rms is lower than that of surviving �rms, while
productivity of entering �rms is lower than productivity of surviving �rms.

15Their period of analysis is one year longer, which implies that reallocation should be larger in U.S. just for this reason.
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Figure 7: Labor productivity of entrants, survivors and exitors
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Cabral and Mata (2003) have argued that initial size did not matter for subsequent probability of
survival of entering �rms, which is also shown for our data. They interpreted this evidence against the
model of industrial dynamics developed by Jovanovic (1982). In Figure 8, we compare labor productivity
of 1995 entrants over time and between surviving and exiting entrants. It is shown that labor productivity
shift is primarily due to productivity growth of surviving �rms, which can be ascribed to learning process,
and only to a lesser extent due to survival of more productive �rms. Nevertheless, surviving �rms (denoted
1995s) were in 1995 more productive than exiting �rms (denoted 1995x). Olley and Pakes (1996), Liu
and Tybout (1996) and Aw, Chen and Roberts (1997) have also found that both learning and selection
processes are important in explaining dynamics of productivity for new �rms.

Figure 8: Labor productivity of 1995 entrants
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Source: Author�s calculations.

Since at least half of aggregate labor productivity growth is generated with inner growth of �rms,
large �rms in particular, it is important to understand, what is the mechnaism underlying this growth. A
simple answer to this would be catching up due to convergence in capital intensity and technology. In this
section, we show that a large contribution to aggregate growth is related to labor productivity of �rms
that shift closer to the �rms with the highest labor productivity. Whether this is due to convergence in
capital intensity or technological convergence will not be tackled until next section.
In order to illustrate the labor productivity convergence conjecture, we construct six equally sized

classes for logarithm of labor productivity.16 Using these classes, we perform FHK decomposition for
surviving �rms over the period 1994-2003 disaggregated by initial and end of period productivity classes.
Although by doing so, we may encounter the survival bias, we show in the subsequent analysis that
correcting for this bias does not change the main result. Table 18 provides the results of FHK decomposition
using labor and output weights (in parentheses). The main message is that �rms that were initially in
the productivity class 6-8 and end up being in class 8-10 are the main contributors to aggregate labor
productivity growth (37 percent). Thus we can conclude that large �rms, where majority of aggregate
growth is generated, with lower than frontier labor productivity are the key contributors to growth.
However, growth of �rms that did not shift between productivity classes should not be overlooked as
almost 25 percent is generated in these �rms. Furthermore, a large between component (9 percent) for
�rms that were stayed in 8-10 productivity class shows that initially more productive �rms were indeed
growing by expansion of labor.

Table 18: FHK decomposition of aggregate productivity growth, productivity classes

Labor (output) weights
t n t� 9 E¤ect 4-6 6-8 8-10 10-12

Within 0.0031 (0.0012) 0.08 (0.03) -0.01 (-0.01) -
6-8 Between - 0.03 (0.01) 0.02 (0.001) -

Cross - -0.01 (-0.002) -0.01 (0.002) -
Within 0.006 (-) 0.37 (0.25) 0.16 (0.23) -

8-10 Between - 0.001 (-0.01) 0.09 (0.03) 0.01 (-0.05)
Cross -0.005 (-) -0.002 (0.13) -0.01 (0.05) -0.01 (0.008)
Within - 0.08 (0.06) 0.001 (0.003) - (-0.006)

10-12 Between - -0.001 (-) - (0.001) -
Cross - -0.08 (-0.03) - (0.005) -

Source: Author�s calculations.
Notes: 1;2 The contribution to aggregate growth calculated labor (output) weights.

The transitions in labor productivity are also analyzed in Tables 19 and 20, where we show unweighted
and weighted transition matrices for the entire transition period. The reader should be aware that time
span, choice of productivity classes and weights all a¤ect calculated transition probabilities. The lengthier
is the time span between initial and end productivity distribution, the smaller is observed persistence of
productivity. Further, for more coarse productivity classes, observed persistence is larger. The extent of
measured persistence also depends on whether we use weights or not. Thus we use two di¤erent approaches
to illustrate the dynamics of labor productivity over time.
In line with �ndings of Baily, Hulten and Campbell (1992), both tables with unweighted and weighted

transition matrices exhibit substantial persistence in labor productivity. For example, we can see in Table
19, where unweighted transition matrix using the productivity classes of Table 18 is shown, that 47 percent
of �rms in productivity class 8-10 remain there even after 9 years. Nevertheless, even for these �rms, we
�nd substantial exit rate (30 percent) or decline of productivity to lower classes (21 percent). This suggests
substantial turnover in labor productivity. The survival bias is clearly present as initially more productive
�rms are less likely to exit, a �nding that was already illustrated in Figure 7. Surviving less productive
�rms are also likely to improve their productivity levels as suggested by below diagonal probabilities.

16An alternative (and often used) approach that eliminates the drift in growth of labor productivity constructs these classes
relative to the average labor productivity in a given year.
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Table 19: Unweighted transition matrix for labor productivity, 1994-2003

t� t� 9 0-2 2-4 4-6 6-8 8-10 10-12 Entry
0-2 0 0 0 0 0 0 0
2-4 0 0 0 0 0 0 0
4-6 0 0 0.02 0.01 0 0 0.02
6-8 0 0.15 0.24 0.34 0.21 0.11 0.59
8-10 1.00 0.10 0.10 0.23 0.47 0.32 0.39
10-12 0 0 0 0 0.005 0.26 0
Exit 0 0.75 0.65 0.42 0.30 0.32 -

Source: Author�s calculations.
Notes: The productivity classes are the same as in Table 22.

As a robustness check, in Table 20 we provide weighted transition matrix with productvity classes
de�ned relative to average labor productivity in a given year. The weights used in the calculation of
transition probabilities are initial labor shares for surviving and exiting �rms and end of period share for
entering �rms. Table 20 conveys the same message as was summarized above. The dynamics of labor
productivity can be described as fairly persistent, where the degree of persistence (or value of diagonal
transition probabilities) depends on initial labor productivity. Namely, higher initial labor productivity
implies higher persistence. To a large extent, this is related to lower exit rates for initially more productive
�rms. We also observe substantial shifts in terms of productivity. Firms with initially less than average
productivity levels are more likely to improve than remain in the same relative productivity interval, while
�rms with above than avreage productvity are more likely to lose their advantage.

Table 20: Weighted transition matrix for labor productivity

1994-2003
t� t� 9 1 2 3 4 5 6 Entry
1 0.01 0.02 0.01 0.01 0.01 0.01 0.04
2 0.07 0.13 0.16 0.10 0.07 0.02 0.19
3 0.05 0.15 0.26 0.16 0.12 0.07 0.26
4 0.08 0.09 0.14 0.23 0.18 0.09 0.24
5 0.02 0.07 0.08 0.17 0.26 0.15 0.15
6 0.04 0.01 0.05 0.06 0.16 0.52 0.12
Exit 0.73 0.53 0.29 0.28 0.21 0.14 -

Source: Author�s calculations.
Notes: i) �y denotes the average labor productivity in a given year.

ii) Weights used in calculation of transition probabilities are initial employment shares.
iii) Productivity classes are: (1) y < 0:25�y; (2) 0:25�y < y < 0:5�y, (3) 0:5�y < y < 0:75�y; (4) 0:75�y < y < �y,

(5) �y < y < 2�y, (6) 2�y < y:

4.2 Decomposition of labor productivity growth by factors

An encompasing set of stylized facts should also provide some insight into underlying factors of labor
productivity dynamics. Hence, we continue by investigation of underlying factors of labor productivity
dynamics, particularly, capital intensity and total factor productivity (TFP). In what follows, we show
that capital intensity is a poor predictor of labor productivity dynamics, which implies that we ascribe
(rightly or wrongly) the features described above to the dynamics of TFP. First, we provide some stylized
facts on dynamics of capital intensity and proceed with analysis of TFP.

4.2.1 Capital intensity

If capital intensity was the key factor in explaining heterogeneity of levels and growth rates, we should
observe a strong relation between capital intensity and labor productivity. Table 21 shows average and
aggregate capital intensities for the entire transition period. The average and aggregate capital intensities
are de�ned as unweighted and weighted averages, again using respective labor shares as weights. While
both of these measures are fairly volatile, average capital intensity exhibits far weaker trending behavior
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than aggregate capital intensity. Respective average growth rates are 0.25 and 1.63 percent. Note that these
growth rates are much lower than the average growth rates for average and aggregate labor productivity,
which are 5.64 and 7.79 percent, respectively. Furthermore, aggregate capital intensities for di¤erent size
groups did not correspond to their labor productivity counterparts, both in terms of rankings of levels and
growth rates. For example, in 1994, labor productivity of large �rms was lower than labor productivity
of small �rms, while the opposite is true for capital intensity. The only consistent feature between capital
intensity and labor productivity is for growth rates of large �rms as these had the fastest growth of capital
intensity and labor productivity. Nevertheless, the growth rate of capital intensity in large �rms is 6
percentage points lower than the growth rate of labor productivity. A simple regression of logarithm of
labor productivty on logarithm of capital intensity reveals a regression coe¢ cient of 0.22, for which we
can explain utmost 15 percent (R2Adjusted) of labor productivity growth by capital intensity.

Table 21: Evolution of capital intensity
[in thousand SIT, constant base in 1994]

Average1 Aggregate2

Year All All Micro Small Medium Large
1994 3583 3586 3559 3630 3187 3749
1995 3338 3453 3110 3121 3032 3693
1996 3307 3485 3191 3317 2969 3760
1997 3565 3754 3564 3444 3140 4102
1998 3519 3772 3351 3459 3257 4094
1999 3509 3897 3627 3312 3286 4337
2000 3449 3984 3345 3444 3233 4534
2001 3420 4037 3356 3482 3472 4494
2002 3514 3941 3524 3049 3296 4487
2003 3665 4148 3753 3249 3473 4742

Average growth 0.25 1.63 0.59 -1.22 0.96 2.64

Source: Author�s calculations.
Notes: 1 The average value added per employee is calculated as a simple (unweighted) average of individual

productivities.
2 The aggregate value added per employee is calculated as weighted average of individual productivities, where

weights used are respective labor shares.

The fact that capital intensity has only modest power to explain labor productivity levels and hetero-
geneity of growth rates is also illustrated in Figures 9, 10 and 11. In Figure 9, we plot capital intensity
distributions for 1994, 1999 and 2003. In contrast with Figure 6, where we track labor productivity dis-
tribution shifts over time, there is no clear-cut shift in capital intensity distribution. In addition, capital
intensity dispersion has even increased.
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Figure 9: Capital intensity distributions over time
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Figure 10 plots capital intensity of exiting and surviving �rms in 1994 and entering and surviving �rms
in 2003. Again, these distributions exhibit only modest di¤erences, far smaller than those observed for
labor productivity. Nevertheless, we �nd that exitors are less capital intensive than survivors, entrants
are less capital intensive than surviving �rms. Furthermore, surviving �rms exhibit increasing capital
intensity.

Figure 10: Capital intensity distributions for di¤erent types of �rms
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Source: Author�s calculations.
Notes: Surviving �rms are those that are active both in 1994 and 2003.
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In Figure 11, we show capital intensity distributions over time for a cohort of entering �rms in 1995.
In Figure 8, we see that labor productivity of surviving �rms is increasing, while capital intensity shown
in Figure 11 exhibits far smaller shift in distribution.

Figure 11: Evolution of capital intensity for 1995 cohort of entrants
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The evidence gathered so far shows that labor productivity di¤erences cannot be explained by di¤er-
ences in capital intensity. Hence TFP must be the underlying force behind the shifts in labor productivity
and the remainder to this section investigates its dynamics.

4.2.2 Total factor productivity

The standard approach to estimation of total factor productivity is indirect. It requires estimation of
production function and its residuals with added regression constant are estimates of total factor produc-
tivity. The estimates of total factor productivity are heavily dependent on consistency of estimates of
production function coe¢ cients. Griliches and Mairesse (1995) emphasize that consistency of estimates
hinges on: (i) selection of functional form and adequate data, (ii) measurement of inputs and outputs, (iii)
quality adjustments for di¤erent factors (labor, etc.), (iv) the methodology of sample selection and (v) the
choice of estimation procedure. While we have done our best in correctly measuring inputs and outputs
(although we have de�ators only at 2 digit NACE level), lack of data on labor structure does not allow us
to distinguish between workers with di¤erent amounts of human capital. Hence, here we only discuss the
choice of adequate data, sample selection and estimation procedure.17

In the relevant literature, a choice of adequate data is primarily related to the choice between the
following two forms of production functions

GYit = AtK
�
itL

�
itM


ite

"it ; (7)

and
Yit = AtK

�
itL

�
ite

"it ; (8)

where GYit and Yit denote sales and value added for �rm i in period t, Ait is an aggregate index of
technology, Kit is a measure of capital, Lit is employment and Mit is a measure of material costs. �; �

17Some authors use translog production function, which includes also higher order terms and interaction terms. For recent
examples, see Orazem and Vodopivec (2003) and Sabrianova et al. (2004).
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and  are elasticities to capital, labor and materials, respectively, and "it is an error term. Baily et al.
(1992) and FHK estimate (7) in a logarithmic form

lnGYit = lnAt + � lnKit + � lnLit +  lnMit + "it; "it~i:i:d(0; �
2) (9)

and retrieve TFP from it

lnTFPit = lnGYit � �̂ lnKit + �̂ lnLit +  lnMit = lnAt + "it; (10)

where hats denote estimates. The advantage of using sales as the dependent variable is to avoid the
restriction imposed on the way material costs enter production function, Yit = GYit �Mit; while value
added as the dependent variable allows more natural interpretation of TFP and allows variation in material
input shares. An alternative estimator of TFP with value added as the dependent variable that can be
obtained from (8) is

lnTFPit = lnYit � �̂ lnKit + �̂ lnLit = lnAt + "it: (11)

Recent literature deals also with problems of selection and endogeneity bias in the ordinary least squares
(OLS) estimates of production function coe¢ cients. The selection bias is a consequence of entry and exit
of �rms. For example, more productive �rms are less likely to exit. Also, larger �rms may a¤ord to exit at
lower productivity levels. Hence, average productivity levels may be decreasing with size of �rms, which
may generate a negative bias in coe¢ cients. Importance of this bias can be observed from comparison of
production function estimates based on balanced and full samples of �rms.
Tables 22 and 23 provide the estimates of production functions (10) and (11) using both OLS and

�xed e¤ects (to allow for persistent �rm speci�c di¤erences in TFP, henceforth FE) for full (unbalanced)
sample, which includes �rms that enter and exit, and for balanced sample. Olley and Pakes (1996) found
for their sample that regression coe¢ cient for capital (labor) was much larger (lower) in full sample than
in balanced sample. For example, authors estimated an OLS capital coe¢ cient with value added as a
dependent variable 0.308 in full sample and 0.163 in a balanced sample. Respective estimates in our case
are 0.230 and 0.218, which leads to conclusion that selection bias is not such a great problem for our data.
The second problem dealt with in the literature is simultaneity or endogeneity of production inputs.

If exogeneity of the right hand side variables is not a valid assumption, the OLS estimates may not
be consistent. The key problem of simultaneity is of course unobserved heteroegenity in total factor
productivity. Persistent (or better �xed) di¤erences of productivity over time could easily be eliminated
by �rst di¤erencing or within transformation. The log of production function given in (8), amended for
this unobserved and time invariant heterogeneity has the following form

lnYit = � lnKit + � lnLit + �i + "it (12)

where �i stands for �xed �rm-speci�c e¤ects that can be eliminated by subtracting individual means or
within transformation. That is

lnYit � lnYi: = �(lnKit � lnKi:) + �(lnLit � lnLi:) + "it � "i:

where, for example, lnYi: =
PT

t=1 lnYit
T : To the extent that "it are not transmitted to other right-hand side

variables, the problem of simultanety is thus solved. From empirical point of view, this is unlikely to be
the case. Furthermore, within transformation is not satisfactory, because capital coe¢ cients are found low
and returns to scale are decreasing, a consequence found also for our data. Reader should only compare
estimates given in the �rst and third columns of Table 22. Griliches and Mairesse (1995) point out that
this may be a consequence of reduced ratio between information and measurement errors in the data.
Downward biased coe¢ cients are also found for estimates using more sophisiticated methods that rely on
within (or �rst di¤erence) transformations, such as those proposed by Arellano and Bond (1991) and Bond
and Blundell (1998) which are based on generalized method of moments.18

A di¤erent solution to the problem of endogeneity has been proposed by Olley and Pakes (1996,
henceforth OP), who develop estimation equations from a structural model of a dynamically optimizing
�rm. The advantage over the traditional within approach or GMM type of estimators is that more
information is preserved in the original data as it is not transformed. Their innovation is in introduction of
an investment equation, which serves as a proxy for the transmitted (but unobserved) technology shocks.
The additional bene�t of this approach is that unobserved productivity may not be �xed over time.

18For example, the estimates of production function coe¢ cients following Arellano and Bond (1991) are �̂ = 0:12 and
�̂ = 0:50, even lower than estimates found for within transformation.

29



However, Griliches and Mairesse (1995) note that the solution to the problem of simultaneity proposed by
OP does not come very far. They note that the estimated marginal productivity coe¢ cients do not di¤er
between (unbalanced) OLS and OP method, which is an indication that the problem of simultaneity is
not particularly large. While capital coe¢ cient should be downward biased and labor coe¢ cient upward
biased, this was not found on alternative sample of �rms used by Griliches and Mairesse. de Loecker
and Konings (2003) also �nd relatively modest di¤erences between OLS and Olley and Pakes estimates
for Slovenian manufacturing �rms at disaggregated level. Furthermore, the correction was not always
in the correct direction. In Table 27, we provide estimates based on a method proposed by Levinsohn
and Petrin (2001, henceforth LP) that follows the same ideas as that of OP. Instead of using investment
expenditure as a proxy for unobservable technological shocks, they propose to use measures of material
inputs, such as energy consumption or costs of materials. They emphasize three main advantages: (i)
material costs, unlike investments, respond to the entire productivity shock and not just to unanticipated
part of technological shocks; that is, if we split productivity shocks into two components: a serially
correlated one and unforcastable part, than investment responds only to a serially correlated shock; as
a consequence, some correlation between unobserved technological shock and capital and therefore some
bias would remain in the estimated production function coe¢ cients (ii) intermediate inputs provide a
simpler link between estimation strategy and economic theory, primarily because intermediates are not
state variables; (iii) data advantage; some �rms have no investment, which truncates the usable part of
the sample, which is not a problem with material costs. For our data, we report the estimates obtained by
LP method and �nd that the correction is not made in the correct direction. Namely, capital coe¢ cient is
lower than with OLS, while labor coe¢ cient declines substantially. Such an e¤ect is characteristic when we
estimate production function (8) amended by material costs. Inclusion of material costs was suggested by
Basu and Fernald (1995), who argue that material inputs may control for temporary productivity shocks
that may re�ect capacity utilization shifts. Thus, material inputs largely pick up the e¤ect of shocks that
are also re�ected in labor.

Table 22: Production function estimations, 1994-2003

Variable Sales Value Added
Method OLS FE Basu-Fernald
Sample Full Balanced Full Balanced Full
Capital 0.042 (44.0) 0.049 (36.5) 0.039 (29.3) 0.038 (21.8) 0.137 (58.2)
Labor 0.220 (146.5) 0.200 (102.1) 0.191 (71.2) 0.181 (55.0) 0.581 (156.2)

Mat. Cost 0.736 (603.7) 0.742 (435.4) 0.710 (381.2) 0.719 (273.2) 0.316 (104.4)
Sect. Dum. Yes Yes - - Yes
Time Dum. Yes Yes Yes Yes Yes

N 42872 17590 42872 17590 42844
R2Adj 0.983 0.991 0.982 0.990 0.900

Variable Value Added
Method OLS FE LP
Sample Full Balanced Full Balanced Full
Capital 0.218 (87.8) 0.230 (62.4) 0.167 (45.3) 0.161 (31.7) 0.201 (22.2)
Labor 0.796 (228.9) 0.752 (159.9) 0.722 (103.5) 0.682 (76.8) 0.569 (120.3)

Mat. Cost - - - - -
Sect. Dum. Yes Yes - - -
Time Dum. Yes Yes Yes Yes -

N 42852 17590 42852 17590 42844
R2Adj 0.873 0.927 0.860 0.913 -

Source: Author�s calculations.
Notes: Sectoral dummies are based on 5 digit NACE classi�cation.

From the discussion above it follows that despite potential biases caused by selection and simultaneity,
these may not be that important. In fact, all methods that attempt to correct for these biases fail to
correct in expected direction and mostly exhibit decreasing returns to scale. Therefore, we trust the OLS
estimates most and provide these for sales and value added for full sample of active �rms. However, in
order to provide a robustness check, we also present statistics for TFP obtained from LP procedure. The
cumulative TFP growth rates calculated either as unweighted or weighted averages when the dependent
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variable is sales is around 15 percent, provided in Table 23. Weighted growth rate with employment
shares of �rms (denoted aggregate) is slightly higher, which again re�ects the faster growth rates of larger
�rms. However, there is inconsistency in results related to small �rms, which are found to grow at lowest
growth rates, while the rankings of labor productivity growth rates are related to size. This is peculiar
also because these �rms had also the lowest growth rates for capital intensity. When value added is the
dependent variable, the growth rates of TFP are much higher due to di¤erent measurement scale. These
values, irrespective of the estimation method used are around 60 percent, which is clearly the majority of
labor productivity growth. The rankings of TFP growth rates obtained from OLS are related to size, while
this is not the case for LP procedure. Nevertheless, it is indisputable that large �rms grow with highest
growth rates and since these have larger labor share, the cumulative growth rate using labor weights is
higher than the cumulative growth rate using simple weights.

Table 23: Evolution of total factor productivity, 1994-2003

Average1 Aggregate2

Average growth 1994-2003 All All Micro Small Medium Large
Sales, OLS, full sample 0.146 0.153 0.143 0.125 0.155 0.156

Value added, OLS, full sample 0.620 0.644 0.595 0.595 0.598 0.667
LP, full sample 0.617 0.647 0.63 0.60 0.584 0.663

Source: Author�s calculations.
Notes: 1 Average TFP is calculated using simple weights (each �rm has 1 over number of �rms share.

2 Aggregate TFP is calculated using labor shares as weights.

Figure 12 plots TFP distributions based on OLS estimator and value added as a dependent variable.
TFP distribution shifts over time, very much like the shifts observed for labor productivity. Such shifts in
aggregate TFP are also found for TFP estimates obtained by alternative methods.

Figure 12: Evolution of total factor productivity, 1994-2003
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Source: Author�s calculations.
Notes: These TFP distrbutions are based on estimates of TFP by OLS with value added as a dependent variable

and full sample of active �rms.
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We turn, now, to the decomposition of aggregate TFP growth. When we discussed labor productivity,
we saw that actual results of decompositions may depend on the method of decomposition, the choice of
weights, the length of time span and the period under consideration. The results of TFP decomposition
depend, in addition to these, also on the choice of TFP estimator. From discussion so far, it is clear which
is our preferred choice of TFP estimator. However, we need to be sure that the main qualitative features
are robust to this choice. Therefore, we show in Table 24 the results of FHK decomposition using 3 and 9
year time periods, labor weights and three di¤erent TFP estimators. This table allows us to draw several
conclusions that complement the evidence on labor productivity dynamics.
First of all, note that the growth rates of TFP growth are declining over time, which explains the

declining rates in labor productivity shown in Table 16 and is also consistent with �ndings of de Loecker
and Konings (2003) for Slovenian manufacturing data between 1994-2001 and using OP estimator of TFP.
Further, we �nd that the contribution of within �rm growth is again relatively large both for three and
nine year time span. Over the period 1994-2003, at least 45 percent of aggregate growth is generated
within �rms. Since we use labor weights, the results for reallocation terms in Table 24 should also be
quite similar to those in top panel of Table 16. This is, however, not the case, which suggests that capital
intensity also plays some role in determination of relative importance of di¤erent components of aggregate
labor productivity growth. The main di¤erences are in the shares of di¤erent reallocation components,
net entry and covariance e¤ects. The net entry suggests that entering �rms are relatively more productive
than initial aggregate productvity, while exiting �rms have less than average TFP. Further, cross term is
much smaller, which implies that shifts in labor share are less negatively correlated to shifts in TFP than
with labor productivity. A sensible interpretation of this is that large �rms that were downisizing in terms
of labor (but not capital) were also increasing labor productivity largely through capital deepening and
not through TFP. The contribution of net entry over the entire period (1994-2003) is at least 30 percent,
depending on the choice of TFP estimator, which is much higher than that obtained by FHK for U.S. (26
percent).
The results of FHK decompositions of TFP growth provided by de Locker and Konings (2003) for

Slovenian manufacturing �rms active in the period 1994-2001 are not directly comparable to our results
as they use OP estimator for TFP estimation and provide only one year decompositions. However, we
can nevertheless compare the qualitative features of results. Their results ascribe unrealistically large
contribution to entering and exiting �rms, while between component is negative, the opposite of what we
�nd. Why this is the case is not clear as there are several di¤erences in our estimations. They use PPI
as de�ator for nominal capital, make OP decomposition and use much shorter time span. But, the fact
that our results are not very di¤erent from those obtained in studies for other countries makes us quite
con�dent.

Table 24: FHK decompositions for TFP growth, 1994-2003

Dependent variable: Sales; TFP estimator: OLS
Cumulative change Within Between Cross Exit Entry

1994-1997 0.06 0.72 0.33 -0.29 0.11 0.13
1997-2000 0.05 0.55 0.24 -0.04 0.15 0.08
2000-2003 0.04 0.50 0.34 -0.20 0.07 0.26
1994-2003 0.15 0.45 0.14 -0.05 0.08 0.36

Dependent variable: Value added; TFP estimator: OLS
Cumulative change Within Between Cross Exit Entry

1994-1997 0.31 0.69 0.22 -0.13 0.10 0.11
1997-2000 0.18 0.58 0.19 0.004 0.19 0.04
2000-2003 0.14 0.48 0.26 -0.02 0.14 0.13
1994-2003 0.63 0.49 0.14 -0.03 0.07 0.33

Dependent variable: Value added; TFP estimator: LP
Cumulative change Within Between Cross Exit Entry

1994-1997 0.26 0.70 0.07 0.09 0.14 -0.01
1997-2000 0.15 0.56 -0.06 0.21 0.35 -0.06
2000-2003 0.13 0.38 0.15 0.18 0.35 -0.13
1994-2003 0.55 0.47 -0.004 0.16 0.13 0.20

Source: Author�s own calculations.
Notes: 1 Absolute change in TFP.

32



2 Share in change of TFP in parentheses.
3 The weights used in decompositions are labor shares.

In order to complement the evidence given in Figures 7 and 8, we show in Figures 13 and 14 TFP
distributions for di¤erent types of �rms. In particular, Figure 13 contains TFP distributions for surviving,
entenring and exiting �rms. Again, we can see that exiting �rms were less productive in terms of TFP in
1994, while entering �rms were just as productive (if nor more) as surviving �rms. This evidence con�rms
the fact that entering �rms are mainly less intensive in capital, while just as productive in terms of TFP.

Figure 13: TFP distributions for di¤erent types of �rms
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Figure 14 shows compares TFP distributions for cohort of 1995 entrants over time and between sur-
viving and exiting entrants. Clearly, surviving entrants (denoted 1995s) were in 1995 more productive
than exiting entrants (denoted 1995x). This is again an indication that initial productivity matters for
subsequent growth, although the main change came from subsequent TFP improvements and not selec-
tion. This �nding is consistent with both Jovanovic (1982) and Ericson and Pakes (1995) models, although
note that size distributions show no advantage for initially more productive (and thus more likely to be
surviving) �rms, which contrasts Jovanovic�s idea of passive learning.
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Figure 14: TFP distributions for cohort of 1995 entrants
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So far, we have shown that the dynamics of �rms with di¤erent size exhibit quite di¤erent dynamics
during transition and have di¤erent relative contributions to aggregate labor productivity growth. There-
fore, we should expect that FHK decompositions of TFP growth dissaggregated with respect to size of
�rms should provide better understanding of aggregate productivity growth. In Table 25, we show these
decompositions for three di¤erent subperiods and the entire period of available data. The results con�rm
our conjecture that within e¤ect in large �rms is the largest component in these decompositions, irre-
spective of the time period under consideration. In fact, the relative contributions to aggregate growth
are again ranked with size of �rms. The data reveal little systematic time variation. We can see that
within component has a decreasing importance over time, mainly related to decreasing shares of medium
and large �rms. This is partly related to dissapearence of a negative cross e¤ect over time. While in
the early transition process, simultaneous labor decline (downsizing) and an increase in TFP generated a
large negative covariance term, this has changed already in the second subperiod. The between e¤ect for
small �rms has also declined over time, which can be interpreted as increasing employment share in these
more productive �rms. The contribution of net entry is increasing over time, although consistent patterns
cannot be traced in the data.

34



Table 25: Size and FHK decomposition for TFP growth

1994-1997
Total Within Between Cross Exit Entry

Micro 0.07 0.02 0.02 0.00 0.00 0.02
Small 0.11 0.02 0.09 -0.04 0.01 0.03
Medium 0.28 0.16 0.03 -0.02 0.04 0.07
Large 0.54 0.50 0.08 -0.08 0.05 -0.01
Total 1.00 0.70 0.22 -0.13 0.10 0.11

1997-2000
Total Within Between Cross Exit Entry

Micro 0.07 0.02 0.06 -0.03 0.01 0.01
Small 0.09 0.03 0.03 0.02 0.01 0.01
Medium 0.20 0.11 0.04 0.00 0.06 0.00
Large 0.64 0.42 0.06 0.01 0.12 0.02
Total 1.00 0.58 0.19 0.00 0.19 0.04

2000-2003
Total Within Between Cross Exit Entry

Micro 0.07 0.01 0.02 -0.01 0.01 0.03
Small 0.10 0.03 0.04 -0.02 0.01 0.05
Medium 0.30 0.11 0.08 0.01 0.11 0.01
Large 0.52 0.33 0.13 0.00 0.01 0.04
Total 1.00 0.48 0.26 -0.02 0.14 0.13

1994-2003
Total Within Between Cross Exit Entry

Micro 0.08 0.01 0.02 0.01 0.00 0.04
Small 0.14 0.01 0.07 -0.02 0.00 0.07
Medium 0.28 0.12 0.01 0.01 0.04 0.10
Large 0.50 0.35 0.04 -0.04 0.04 0.12
Total 1.00 0.49 0.14 -0.03 0.07 0.33

Source: Author�s calculations.
Notes: The TFP is estimated by OLS and value added as a dependent variable. Labor weights are used in

decompositions.

As argued above, the pattern of productivity convergence may be partly responsible for aggregate labor
productivity growth. Here we show that TFP growth in �rms that were initially lagging behind caught
up and thus made the largest contribution toaggregate labor productivity growth. Table 26 contains the
results of FHK decomposition for TFP using both labor and output weights. In order to be able to give
an indication of convergence, we again classify �rms in several TFP classes. Note that 37 percent of
aggregate TFP growth is generated in �rms that moved from a productivity class 4-6 to 6-8, which are
�rms that were lagging behind. This �nding is also robust to choice of weights. However, since results in
Table 26 are only indicative of the relative importance of growth of productivity of �rms that are initially
lagging behind in TFP, the real test of this is provided in Table 27, where we also control for survival or
self-selection bias.

Table 26: FHK decomposition for TFP growth and shifts in productivity classes, 1994-2003

Labor (output) weights
2003 n1994 E¤ect <2 2-4 4-6 6-8

Within - - -0.01 (-0.01) -
2-4 Between - - - -

Cross - - 0.01 (0.01) -
Within - 0.01 (0.00) 0.05 (0.02) -0.01 (-0.02)

4-6 Between - 0.00 (0.00) 0.01 (0.00) 0.01 (-0.01)
Cross - 0.00 (0.00) - -0.01 (0.01)
Within 0.01 (0.00) 0.01 (0.00) 0.37 (0.37) 0.06 (0.10)

6-8 Between 0.00 (0.00) 0.00 (0.00) 0.00 (-0.02) 0.10 (0.08)
Cross 0.00 (0.00) 0.00 (0.00) 0.00 (0.12) -0.02 (0.01)
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Source: Author�s calculations.
Notes: i) The contribution to aggregate growth calculated labor (output) weights.

ii) The TFP is estimated by OLS and value added as a dependent variable. Labor weights are used in
decompositions.

The system of equations that is estimated and shown in Table 27 is very similar to that in equations
(2) and (3). The only di¤erence is that instead of size equation, we have TFP equation

lnTFPit = �0 + �1 lnTFPit�� + �2 lnSit + �3TimeD + �4SecD + "it; (13)

Pr(Survivalit = 1) = �0 + �1 lnTFPit�� + �2 lnSit + �3TimeD + �4SecD + �it;

where �0s are regression coe¢ cient for TFP equation and � are coe¢ cients in survival equation. The
estimation procedure is again Heckman�s maximum likelihood estimation. The most important �nding
is that while initial TFP is positively related to end of period TFP, an indication of persistence of TFP
di¤erences, these di¤erences are smaller. In particular, a coe¢ cient for initial TFP with value 0.22 as
found in columns (1) and (2), implies that growth of TFP is negatively related to initial TFP levels. Given
that we correct for survival bias, this can be intepreted as catch up of �rms that were technologically
lagging behind. The respective coe¢ cients in columns (3)-(6), where we show estimates for subsequent
periods, we �nd that the speed of convergence has been declining. In conclusion, �rms that were initially
less productive were indeed more likely to exit. However, even after correcting for this survival bias, we
still �nd that more productive �rms grow at lower growth rates.

Table 27: Relationship between growth of TFP, size and initial TFP

Equation Period
1994-1997 1997-2000 2000-2003

TFPit (1) (2) (3) (4) (5) (6)
lnSit -0.029 (-5.01) 0.059 (1.52) -0.016 (-3.04) 0.15 (4.87) 0.002 (0.47) 0.13 (4.0)
(lnSit)2 - -0.034 (-2.41) - -0.05 (-4.96) - -0.04 (-3.9)
(lnSit)3 - .0032 (2.39) - 0.004 (4.59) - 0.003 (3.5)
TFPit�3 0.22 (9.93) 0.22 (10.2) 0.35 (15.7) 0.44 (20.7) 0.473 (20.3) 0.47 (20.1)
Time Dum Yes Yes Yes Yes Yes Yes
Sec. Dum Yes Yes Yes Yes Yes Yes
Cons 4.70 (35.5) 4.62 (35.6) 3.90 (27.9) 3.14 (23.7) 2.98 (20.7) 2.95 (20.5)
Survival
lnSit -0.026 .(-1.73) 0.13 (1.31) 0.02 (1.37) 0.54 (6.8) 0.169 (11.7) 0.62 (8.3)
(lnSit)2 - -0.084 (-1.95) - -0.20 (-5.7) - -0.18 (-5.3)
(lnSit)3 - 0.010 (2.06) - 0.02 (5.1) - 0.02 (4.4)
TFP 0.215 (5.93) 0.205 (5.60) 0.258 (7.69) 0.36 (10.1) 0.35 (10.3) 0.33 (9.8)
Time Dum. Yes Yes Yes Yes Yes Yes
Sec. Dum. Yes Yes Yes Yes Yes Yes
Cons -0.0001 (-0.00) 0.06 (0.24) -0.58 (-2.73) -1.38 (-6.3) -1.78 (-8.61) -1.87 (-8.9)
� (s:e:) -0.756 -0.755 -0.789 0.09 0.07 0.07
�2(1) 57.5 (0.00) 55.5 (0.00) 174.7 (0.00) 33.9 (0.00) 18.2 (0.00) 18.3 (0.00)
Log L -3607.9 -3598.7 -4622.8 -4626.5 -4541.6 -4512.9
N 3166 3166 4200 4200 4332 4332

Source: Author�s calculations.
Notes: i) Dummies for 2 digit NACE sectors included in both equations.

Asterisk denotes 5 percent signi�cance level.
The standard errors of estimates are heteroskedasticity robust, based on Huber-White estimator of variance.

5 Concluding remarks

The motivation for this paper was to compile a set of stylized facts that would provide guidance in building
theoretical models of industrial dynamics during transition. Understanding of what was happening in
manufacturing sector of one of the transition countries allows us to summarize the basic elements that
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any model should have. First, the model should feature heterogeneity of �rms, both in terms of size,
labor and total factor productivity. Initially, FSD and FPD should be negatively related, while by the
end of transition positive relationship should be restored. Second, the model should contain constraints
on growth of small �rms in order to generate observed persistence in size. A realistic approach to this is
introduction of two production factors, labor and capital. While labor can be free of adjustment costs, we
should have �rm speci�c capital. This �rm speci�c capital prevents also labor to �ow from less to more
productive �rms. The speed of reallocation can be further reduced by assumption of �nancing constraints,
which is consistent with empirical evidence for Slovenia (Konings and Xavier, 2003). Third, the model
should feature entry and exit process, where entering �rms are on average smaller and less productive.
Surviving entrants should be more productive than those that exit. Furthermore, exiting �rms should
also be on average smaller and less productive. Fourth, dynamics of TFP should exhibit productivity
convergence, which in the simplest form can be speci�ed as stochastic autoregressive process with less
than perfect persistence in productivity. This mechanism would generate faster growth rates in TFP in
large initially less productive �rms. In conclusion, any dynamic general equilibrium model that contains
these four elements should be able to replicate the qualitative features of industrial dynamics during the
process of transition.
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Appendix

Appendix A

Figure A1: Evolution of capital distribution
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Table A1: Evolution of �rm size distribution

ClassnYear 1994 1997 2000 2003
1 26.5 (0.39) 24.2 (0.49) 21.8 (0.48) 17.0 (0.40)
2 13.5 (0.40) 14.4 (0.58) 13.4 (0.59) 13.2 (0.60)
3 6.78 (0.30) 8.79 (0.53) 9.13 (0.61) 9.56 (0.65)
4 4.93 (0.29) 5.60 (0.45) 6.63 (0.58) 6.69 (0.61)
5 3.59 (0.27) 4.22 (0.43) 4.59 (0.51) 3.54 (0.40)
7 5.20 (0.50) 5.53 (0.72) 5.58 (0.82) 6.90 (0.98)
9 3.04 (0.38) 3.54 (0.61) 4.00 (0.74) 4.67 (0.88)
12 2.89 (0.46) 4.18 (0.93) 4.45 (1.07) 5.90 (1.42)
15 1.89 (0.40) 2.16 (0.61) 2.81 (0.87) 3.05 (0.94)
20 2.65 (0.72) 3.31 (1.21) 3.49 (1.38) 3.34 (1.35)
24 1.37 (0.45) 1.52 (0.69) 1.62 (0.81) 2.36 (1.18)
29 1.50 (0.60) 1.89 (1.03) 2.02 (1.20) 2.31 (1.39)
35 1.43 (0.69) 1.72 (1.12) 1.85 (1.37) 2.17 (1.58)
49 3.01 (1.89) 2.30 (1.97) 2.43 (2.70) 3.88 (3.76)
99 6.36 (6.89) 5.65 (8.37) 5.62 (8.99) 6.15 (9.92)
249 8.67 (20.2) 6.45 (20.5) 6.07 (21.4) 5.53 (19.7)
499 3.95 (20.7) 2.78 (20.1) 2.43 (18.8) 2.38 (18.8)
999 1.82 (17.8) 1.10 (15.3) 1.06 (16.3) 0.96 (16.4)
1000+ 1.0 (26.6) 0.65 (24.2) 0.52 (20.8) 0.43 (19.0)

Source: Author�s own calculations.
Notes: i) The numbers given are shares of �rms in total number of �rms and shares of employees in aggregate

manufacturing employment for active �rms (in parentheses).
ii) The size classes are de�ned by upper size class.
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Appendix B: Transition matrices

The process of shifts in size distribution is regarded as a stochastic Markov process, which implies only
dependence of probability of shift to a given class on size class one period earlier. Note that this approach
is only consistent with some models of industrial dynamics, such as that of Ericson and Pakes (1995)
where technology that determines the size of �rms is assumed to follow a �rst order Markov process. In a
model developed by Jovanovic (1982) size in a given year depends on productivity levels (and thus size)
observed in the entire history of a �rm. Thus, �rst order Markov process is not a realistic description if
their model is the most adequate desciption of the data. However, Ericson and Pakes (1998) show that
size in manufacturing is not dependent on size in the entry period, which is a proof that Ericson and Pakes
(1995) model may be more adequate.
The size distribution (or productivity) in a given period, say t; is denoted with St, where the elements

of St are the shares of �rms in di¤erent size classes. That is, St = fst1; st2; :::; stn+1g, where stj denotes a
share of number of �rms in the size class j. In order to allow for entry and exit, the "reservoir" state stn+1
denotes the share of �rms that either exit or enter. Unless the share of �rms that enter and exit are the
same, which usually is not the case, we can write two di¤erent vectors St, one containing the share of new
�rms and one containg the share of �rms that exit. Naturally, the shares in di¤erent classes form a unit
simplex, which is implied by

X
j

stj = 1.

The evolution of FSD (or productivity distribution) over time can be described by the following process

St+1x = PSte; (14)

where P denotes the square stochastic transition matrix, elements of which are transition probabilities or
relative frequencies, pij , which denote the share of �rms that are in size class i and move to size class j
between periods t and t+ 1. This transition probability is calculated as a ratio between number of �rms
that moved from class i to class j and total number of �rms in class i in period t: Note that these ratio
can be interpreted as transition probabilities estimated by unrestricted maximum likelihood estimators19 .
Also, given our de�nition, the column sum of transition probabilities is always equal to 1, that is

X
i

pij ;

thereby satisfying the condition for a Markov or stochastic matrix. The structure of (14) can be written
as follows

P =

26664
p11 p12 � � � p1e
p21 p22 � � � p2e
...

...
. . .

...
px1 px2 � � � 0

37775 ; St+1x =

26664
st+11

st+12
...

st+1x

37775 ; Ste =
26664
st1
st2
...
ste

37775
where pij , where i and j are less or equal to n (in our case equal to 4 or 20), are transition probabilities
for surviving �rms. pie are shares or probabilities that �rms entering between periods t and t + 1 fall in
size class i; while pxj are shares or probabilities that �rms in size class j exit between periods t and t+ 1.
The matrix Ste denotes the shares of �rms in period t, where the last element denoted with s

t
e corresponds

to share of entering �rms in �rms active in period t and entering �rms between t and t + 1. Similarly,
St+1x denotes share of �rms in di¤erent size classes in period t+1 and st+1x denotes the share of �rms that
exit between t and t+1 in total number of �rms active at the end of the period and number of �rms that

19Following Amemiya (1986), we can write the likelihood function of the �rst-order time invariant Markov model conditional
on the initial distribution as

L =
Y
i

Y
j

p
mij

ij ;

where mij is total number of �rms moving between classes i and j. Maximizing the log of this likelihood function given a

set of constraints
X
i

pij = 1, j = 1; 2; :::; n+ 1; we can write Lagrangian for this maximization problem

S =
X
i

X
j

mij log pij �
X
j

�j(
X
i

pij � 1):

The �rst order conditions are
mij = �jpij :

Summing both sides over i and using constraints, we obtain

p̂ij =
nijP
i nij

:
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exit. Note that shares of active �rms in di¤erent classes in Table 3 were presented without distinction
between surviving and exiting and entering �rms. However, in order to fully characterize the transition
probabilities, this is the only way to represent the data. If entry rates were equal to exit rates, we could
simplify notation, so that Sx = Se = S. However, the data in Table 1 show that entry rates exceeded exit
rates for most of the transition period, while the di¤erences were declining until 2001.
The likelihood ratio test for time homogeneity or stationarity of transition matrices follows the expo-

sition of Anderson and Goodman (1957):

LR = �2 log
Y
i

Y
j

 
pij
p�ij

!mij

� �2(n+1)n;

where mij denotes the number of �rms that transit between size classes i and j and p�ij denotes the
benchmark transition probabilities. The benchmark transition probabilities may be theoretical or some
sort of average of empirical transition matrices. The number of degrees of freedom for this �2 distribution
is (n + 1)n, where n + 1 is the number of size classes, in our case equal to 5 with respective degrees of
freedom equal to 20.
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