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1 Introduction

Within the fields of finance and actuarial science one is often confronted with the problem of
determining the distribution function of a scalar product of two random vectors of the form

S =
n∑

i=1

XiVi. (1)

In this contribution we will interpret the random variables Xi as future payments/liabilities
due at times i = t1, t2, . . . , tn and Vi as random discount factors equal to e−Y (ti), where the
process Y (t) represents the return on investment in period (0, t). Notice that here the random
vector �X = (X1,X2, . . . ,Xn) may reflect e.g. the insurance or credit risk while the vector
�V = (V1, V2, . . . , Vn) represents the financial/investment risk. In general we assume that these
vectors are mutually independent.

In practical applications the independence assumption may be often violated, e.g. due to an in-
flation factor which strongly influences both payments and investment results. One can however
tackle this problem by considering sums of the form

S =
n∑

i=1

X̃iṼi,

where X̃i = Xi/Zi and Ṽi = ViZi are the adjusted values expressed in real terms (Zi denotes
here an inflation factor over period (0, ti)). For this reason the assumption of independence
between the insurance risk and the financial risk is in most cases realistic and can be efficiently
deployed to obtain various quantities describing risk within financial institutions, e.g. discounted
insurance claims or the embedded/appraisal value of a company.

Distributions of sums of the form (1) are often encountered in practice and need to be analyzed
thoroughly by actuaries and other practitioners involved in the risk management process. Not
only the basic summary measures (like the first few moments) have to be computed, but also
more sophisticated risk measures which require much deeper knowledge about the underlying
distributions (e.g. the Value-at-Risk).

Unfortunately there are no analytical methods to compute distribution functions for random
variables of this form. That’s why usually one has to rely on volatile and time consuming Monte
Carlo simulations. Despite the enormous increase in computational power observed within last
few years, the computational time remains a serious drawback of Monte Carlo simulations,
especially when one is interested in estimating very high values of quantiles (note that a sol-
vency capital of an insurance company may be determined e.g. as the 99.95%-quantile, which is
extremely difficult to estimate within reasonable time by simulation methods).

In this contribution we propose an alternative solution. By extending the methodology of Dhaene
et al. (2002a,b) to the case of scalar products of independent random vectors, we obtain convex
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upper and lower bounds for sums of the form (1). As we demonstrate by means of a series of
numerical illustrations, the methodology provides an excellent framework to get accurate and
easily obtainable approximations of distribution functions for random variables of the form (1).

The structure of the paper is as follows. In Section 2 we briefly revise the theoretical concepts on
which our methodology is based. Next, we demonstrate in Section 3 how to obtain the bounds
for (1) in the convex order sense in case when �V follows the log-normal law. Section 4 contains
several applications for discounted claim processes under the Black & Scholes setting. Finally,
we conclude the paper in Section 5.

2 Methodology

2.1 Convex order and comonotonicity

In this subsection we briefly recapitulate some theoretical results of Dhaene et al. (2002a).

Definition 1 A random variable X is said to precede a random variable Y in the convex order
sense, notation X ≤cx Y , if and only if E[X] = E[Y ] and E [(X − d)+] ≤ E [(Y − d)+] for any
retention d.

Roughly speaking, the convex order corresponds to the intuition of riskiness. Indeed, X ≤cx

Y means that Y is more likely to take on extreme values than X. Note that Definition 1
is equivalent to the statement that X is preferred by all risk-averse decision makers in the
framework of utility theory. It can be also proved that the same holds for the dual theory of
choice under risk of Yaari (1987) — see e.g. Dhaene et al. (2002a). Thus from the viewpoint
of an insurer it will be always a prudent strategy to replace a random variable X by a riskier
random variable Y .

Definition 2 Let �X = (X1,X2, . . . ,Xn) be a random vector with marginal distributions given
by FXi(t) = Pr[Xi ≤ t]. Then �X is said to be comonotonic if there exist a random variable Z
and non-decreasing (non-increasing) functions g1, g2, . . . , gn : R → R such that

�X
d= (g1(Z), g2(Z), . . . , gn(Z)),

where d= means equality in distribution.

If a random variable S consists of a sum of random variables (X1, . . . ,Xn), replacing the copula
of (X1, . . . ,Xn) by the comonotonic copula yields an upper bound for S in the convex order. On
the other hand, applying Jensens inequality to S provides us a lower bound. This is formalized
in the following theorem, which is taken from Dhaene et al. (2002a) and Kaas et al. (2000).

Theorem 1 Consider a sum of random variables S = X1 + X2 + . . . + Xn and define the
following related random variables:

Su = F−1
X1

(U) + F−1
X2

(U) + · · · + F−1
Xn

(U), (2)

Sl = E[X1|Λ] + E[X2|Λ] + · · · + E[Xn|Λ], (3)
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with U a Uniform(0,1) random variable and Λ an arbitrary random variable. Then the following
relations hold:

Sl ≤cx S ≤cx Su.

Proof. See e.g. Dhaene et al. (2002a).

The comonotonic upper bound changes the original copula, but keeps the marginal distribu-
tions unchanged. The comonotonic lower bound on the other hand, changes both the copula
and the marginals involved. Intuitively, one can expect that an appropriate choice of the con-
ditioning variable Λ will lead to much better approximations compared to the upper bound.
This observation has been confirmed empirically in numerous illustrations (see e.g. Dhaene et
al. (2002b))

2.2 Convex upper and lower bounds for scalar products of random vectors

As mentioned in the beginning we want to find accurate approximations for sums of the following
form:

S =
n∑

i=1

XiVi, (4)

where the random vectors �X =
(
X1,X2, . . . ,Xn

)
and �V =

(
V1, V2, . . . , Vn

)
are assumed to be

mutually independent. In deriving lower and upper bounds for sums of the form (4) we recall a
helpful lemma.

Lemma 1 Let �X =
(
X1,X2, . . . ,Xn

)
, �V =

(
V1, V2, . . . , Vn

)
and �W =

(
W1,W2, . . . ,Wn

)
be

non-negative random vectors and assume that �X is mutually independent of the vectors �V and
�W . If for all possible outcomes x1, x2, . . . , xn of �X one has

n∑
i=1

xiVi ≤cx

n∑
i=1

xiWi,

then the corresponding scalar products are ordered in the convex order sense, i.e.

n∑
i=1

XiVi ≤cx

n∑
i=1

XiWi.

Proof. See Hoedemakers et al. (2003).
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Theorem 2 Consider a sum of random variables of the form (4). Define the following quanti-
ties:

Su =
n∑

i=1

F−1
Xi

(U1)F−1
Vi

(U2), (5)

Sl =
n∑

i=1

E
[
Xi|Θ

]
E

[
Vi|Λ

]
, (6)

where U1 and U2 are independent standard Uniform random variables, Θ is a random variable
independent of �V and Λ and the second conditioning random variable Λ is independent of �X
and Θ. Then, the following relation holds:

Sl ≤cx S ≤cx Su.

Proof. The proof is based on a multiple application of Lemma 1.

1. First, we prove that
∑n

i=1 XiVi ≤cx
∑n

i=1 F−1
Xi

(U1)F−1
Vi

(U2).

From Theorem 1 it follows that for all possible outcomes (x1, x2, . . . , xn) of �X the following
inequality holds:

n∑
i=1

xiVi ≤cx

n∑
i=1

F−1
xiVi

(U2) =
n∑

i=1

xiF
−1
Vi

(U2).

Thus from Lemma 1 it follows that
∑n

i=1 XiVi ≤cx
∑n

i=1 XiF
−1
Vi

(U2). The same reasoning
can be applied to show that

n∑
i=1

XiF
−1
Vi

(U2) ≤cx

n∑
i=1

F−1
Xi

(U1)F−1
Vi

(U2).

2. In a similar way, one can show — using Theorem 1 — that

n∑
i=1

E
[
Xi|Θ

]
E

[
Vi|Λ

]
≤cx

n∑
i=1

XiE
[
Vi|Λ

]
≤cx

n∑
i=1

XiVi.

Remark 1 Notice that
∑n

i=1 F−1
Xi

(U1)F−1
Vi

(U2) ≤cx
∑n

i=1 F−1
XiYi

(U). Therefore the upper bound
(5) is improved compared to the comonotonic upper bound (2). It takes efficiently into account
information that the vectors �X and �V are mutually independent.
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We remark also that having obtained the convex upper and lower bounds one can construct a
new approximation, called the moments-based approximation Sm defined by the distribution
function as follows

FSm(t) = zFSl(t) + (1 − z)FSu(t), (7)

where

z =
Var[Su] − Var[S]
Var[Su] − Var[Sl]

. (8)

This approximation results in E[Sm] = E[S] and Var[Sm] = Var[S]. For more details we refer
to Vyncke et al. (2004).

3 Convex bounds for log-normal discount factors

In a lot of financial and actuarial problems one encountres sums of the form

S =
n∑

i=1

Xie
Zi , (9)

with �Z = (Z1, Z2, . . . , Zn) following the multivariate normal law. In this section we use the
following notations:

µi = E[Zi], σ2
i = Var[Zi] and σij = Cov(Zi, Zj).

Further we assume that the random vectors �X and �Z are mutually independent.

In this section we consider the problem in general, without imposing any conditions on the
random variables Xi. In particular we don’t discuss the choice of conditioning variable Θ —
we will demonstrate it by means of some special cases in the next two sections. The upper
and lower bound can be calculated by means of a three step approach which is described in the
following two subsections.

3.1 The upper bound

From Theorem 2 it follows that for the case of log-normally distributed discount factors the
upper bound can be expressed as

Su =
n∑

i=1

F−1
Xi

(U1)F−1
eZi

(U2) =
n∑

i=1

F−1
Xi

(U1)eµi+σiΦ
−1(U2), (10)

where U1 and U2 are independent standard Uniform random variables.
The cumulative distribution function of Su is computed in three steps:
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1. Suppose that U1 = u1 is fixed. Then from (10) it follows that conditional quantiles can be
computed as

F−1
Su|U1=u1

(p) =
n∑

i=1

F−1
Xi

(u1)eµi+σiΦ
−1(p); (11)

2. Obviously for any u1 the function given by (11) is continuous and strictly increasing. Thus
for any y ≥ 0 one can compute the value of the conditional distribution function using one
of the well-known numerical methods (e.g. Newton-Raphson) as a solution of

n∑
i=1

F−1
Xi

(u1)e
µi+σiΦ−1

(
FSu|U1=u1

(y)
)

= y; (12)

3. The cumulative distribution function of Su can now be derived as

FSu(y) =
∫ 1

0
FSu|U1=u1

(y)du1.

3.2 The lower bound

Although the computations for the lower bound are performed in a similar way as in the case of
the upper bound, one should note that the quality of the bound heavily depends on the choice
of the conditioning random variables.

Recall that from Theorem 2 one has that

Sl =
n∑

i=1

E
[
Xi|Θ

]
E

[
eZi |Λ

]
, (13)

where the first conditioning variable Θ is independent of Λ and �Z and where the second con-
ditioning variable Λ is independent of Θ and �X . In this section the choice of Θ will not be
discussed, whereas the choice of Λ is given by the following equation

Λ =
n∑

i=1

E[Xi]eµi+
1
2
σ2

i Zi. (14)

Then the lower bound (13) can be written out as

Sl =
n∑

i=1

E
[
Xi|Θ

]
E

[
eZi |Λ

]
=

n∑
i=1

E
[
Xi|Θ

]
eµi+

1
2
σ2

i (1−r2
i )+σiriΦ

−1(U2), (15)

with U2 a standard uniform random variable and correlation ri given by

ri = Corr(Zi,Λ) =
Cov(Zi,Λ)√

Var[Zi]
√

Var[Λ]
=

∑n
j=1 E[Xi]eµj+

1
2
σ2

j σij

σi

√∑
1≤k,l≤n E[Xk]E[Xl]eµk+µl+

1
2
(σ2

k+σ2
l )σkl

.

(16)
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Note that in case �X is non-negative and �Z has non-negative correlations, the random variable Sl

is (given a value Θ = θ) a sum of the components of a comonotonic vector. Thus the cumulative
distribution function of the lower bound Sl can be computed as for the case of the upper bound
Su, in three steps:

1. From (15) it follows that the conditional quantiles (given Θ = θ) can be computed as

F−1
Sl|Θ=θ

(p) =
n∑

i=1

E
[
Xi|Θ = θ

]
eµi+

1
2
σ2

i (1−r2
i )+σiriΦ

−1(p); (17)

2. The conditional distribution function is computed as the solution of

n∑
i=1

E
[
Xi|Θ = θ

]
e
µi+

1
2
σ2

i (1−r2
i )+σiriΦ−1

(
F

Sl|Θ=θ
(y)

)
= y; (18)

3. Finally, the cumulative distribution function of Sl can be derived as

FSl(y) =
∫ 1

0
FSl|Θ=F−1

Θ (u1)(y)du1. (19)

4 Present value of stochastic cash flows

In this section we derive convex upper and lower bounds for general discounted cash flows S of
the form

S =
n∑

i=1

Xie
−Y (i),

where the random variables Xi denote future (non-negative) payments due at time i. We model
the returns in this paper by means of a Brownian motion (the Black & Scholes model) described
by the following equation

Y (t) = µt + σBt,

where Bt denotes a standard Brownian motion.

Note that the the mean and variance functions are given by

E
[
Y (i)

]
= µi,

Cov
(
Y (i), Y (j)

)
= σ2 min(i, j) not= σij.

We use the notation σ2
i = σii and give explicit results in three specific cases:

1. The vector ln( �X) =
(
ln X1, ln X2, . . . , ln Xn

)
has a multivariate normal distribution and

hence the losses are log-normally distributed;
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2. The vector �X =
(
X1,X2, . . . ,Xn

)
has a multivariate elliptical distribution where

E[Xi]√
Var[Xi]

>> 0. Formally the described methodology is valid only in the case when Xi > 0.

However if we assure that the probabilities Pr[Xi < 0] are very small then the influence of
the negative outcomes of �X on the overall distribution will be negligible;

3. The yearly payments Xi are independent and identically distributed.

4.1 Log-normally distributed payments

4.1.1 Convex upper and lower bounds

Consider a sum of the form

SLN =
n∑

i=1

eNie−Y (i), (20)

where �N =
(
N1, N2, . . . , Nn

)
=

(
ln X1, ln X2, . . . , ln Xn

)
is a normally distributed random

vector with mean �µ �N =
(
µN1, µN2 , . . . , µNn

)
and covariance matrix Σ �N =

[
σ

�N
ij

]
1≤i,j≤n

; we

denote σ
�N
ii by σ2

Ni
.

There are two different approaches to derive convex upper and lower bounds for SLN as defined
in (20). In the first approach independent parts of the scalar product are treated separately. In
the second approach we treat SLN unidimensionally, by noticing that it can be written as

SLN =
n∑

i=1

X̂i =
n∑

i=1

eN̂i , (21)

where �̂
N =

(
N̂1, N̂2, . . . , N̂n

)
=

(
N1 − Y (1), N2 − Y (2), . . . , Nn − Y (n)

)
has a multivariate

normal distribution with

�µ �̂
N

=
(
µN̂1

, µN̂2
, . . . , µN̂n

)
and Σ �̂

N
=

[
σ

�̂
N
ij

]
1≤i,j≤n

(
σ

�̂
N
ii

not= σ2
N̂i

)
, (22)

with

µN̂i
= µNi − iµ and σ

�̂
N
ij = σ

�N
ij + σij. (23)

Thus one can derive convex upper and lower bounds of (20) just by adapting the methodology
described in Section 3. Below we work out both approaches explicitly. Note that the second
method is much less time-consuming because of unidimensionality.

(i) In the first approach the upper bound can be written as

Su
LN =

n∑
i=1

eµNi
+σNi

Φ−1(U1)−iµ+σiΦ−1(U2)
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and its distribution function computed as described in Section 3.1.

To compute the lower bound we propose to define a conditioning random variable Θ
analogously to the conditioning variable Λ, i.e.

Θ =
n∑

i=1

E
[
e−Y (i)

]
e
µNi

+ 1
2
σ2

Ni Ni =
n∑

i=1

e
µNi

−iµ+ 1
2

(
σ2

Ni
+σ2

i

)
Ni. (24)

The conditioning variable Λ is chosen as in (14), which gives after the obvious substitution

Λ = −
n∑

i=1

e
µNi

−iµ+ 1
2

(
σ2

Ni
+σ2

i

)
Y (i). (25)

Now the corresponding lower bound can be written as

Sl1
LN =

n∑
i=1

e
µNi

−iµ+ 1
2
σ2

Ni
(1−r2

Ni
)+ 1

2
σ2

i (1−r2
i )+σNi

rNi
Φ−1(U1)+σiriΦ−1(U2)

,

where correlations ri = Corr
(
− Y (i),Λ

)
are defined as in (16) and

rNi = Corr(Ni,Θ) =

∑n
j=1 e

µNj
−jµ+ 1

2

(
σ2

Nj
+σ2

j

)
σ

�N
ij

σNi

√∑n
k,l=1 e

µNk
+µNl

−kµ−lµ+ 1
2

(
σ2

Nk
+σ2

Nl
+σ2

k+σ2
l

)
σ

�N
kl

.

Its distribution function can be computed by conditioning on U1 as described in Section
3.2.

(ii) From Remark 1 it follows that

Su ≤cx

n∑
i=1

F−1

eN̂i
(U),

and thus we don’t consider the comonotonic upper bound for (21). To compute the lower
bound we take as conditioning random variable

Λ̂ =
n∑

i=1

e
µ

N̂i
+ 1

2
σ2

N̂i N̂i. (26)

Then the lower bound is given explicitly by the following formula

Sl2
LN =

n∑
i=1

e
µ

N̂i
+ 1

2
σ2

N̂i
(1−r2

N̂i
)+σ

N̂i
r
N̂i

Φ−1(U)
,

where

rN̂i
= Corr(N̂i, Λ̃) =

∑n
j=1 e

µ
N̂j

+ 1
2
σ2

N̂j σ
�̂
N
ij

σN̂i

√∑n
k,l=1 e

µ
N̂k

+µ
N̂l

+ 1
2

(
σ2

N̂k
+σ2

N̂l

)
σ

�̂
N
kl
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Note that to obtain a comonotonic lower bound one has to assure additionally that rN̂i
> 0

for all i.

Thus quantiles of this (comonotonic) lower bound are given by the following closed-form
expression:

F−1
LN l2(p) =

n∑
i=1

e
µ

N̂i
+ 1

2
σ2

N̂i
(1−r2

N̂i
)+σ

N̂i
r
N̂i

Φ−1(p)
,

from which one can easily find values of the corresponding cumulative distribution function
e.g. by means of the Newton-Raphson method.

4.1.2 A numerical illustration

In this subsection we study the performance of the derived approximations for a cash flow
with log-normally distributed payments. For purpose of this numerical illustration we chose
parameters µNi = − ln(1.01)

2 and σ2
Ni

= ln(1.01) (note that under this choice one has E[Xi] = 1
and Var

[
Xi

]
= 0.01). Moreover, we allow for some level of dependency between the payments

by imposing correlations between the normal exponents given by

r(Ni, Nj) =




1 if i = j
0.5 if |i − j| = 1
0.2 if |i − j| = 2,
0 if |i − j| > 2.

10 15 20 25
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Figure 1: The convex upper bound Su
LN (triangles) and the lower bounds Sl1

LN (solid circles) and
Sl2
LN (inverse triangles) versus the simulated distribution of SLN (solid line) — the cdf’s and

the QQ-plot
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p SLN (s.e.×103) Sl1
LN Sl2

LN Sm1
LN Sm2

LN Su
LN

0.75 14.6795 (0.71) 14.6818 14.6822 14.6847 14.6839 15.0295
0.90 17.1019 (1.06) 17.0976 17.1024 17.1067 17.1078 18.0976
0.95 18.7769 (1.45) 18.7642 18.7723 18.7788 18.7815 20.2580
0.975 20.3881 (2.08) 20.3631 20.3753 20.3843 20.3882 22.3610
0.995 24.0237 (4.59) 23.9603 23.9823 24.0032 24.0082 27.1914

Table 1: Approximations of upper quantiles of SLN for some probability levels p

Regarding discounting factors, we assume that the returns follow the Black & Scholes model
with drift parameter µ = 0.05 and volatility σ = 0.1.

We compare the distribution functions of the upper bound Su
LN and the lower bounds Sl1

LN
and Sl2

LN to the empirical distribution function of SLN obtained through a Monte Carlo (MC)
simulation based on generating 500 × 100 000 sample paths.

The performance of the derived approximations is illustrated on Figure 1. One can see that
the upper bound Su

LN gives quite poor approximation. The main reason for that is a relatively
weak dependence between payments, for which the comonotonic approximation significantly
overestimates the tails (it is very clear both from the plot of cdf’s and from the QQ-plot). On the
other hand, both lower bounds Sl1

LN and Sl2
LN give excellent approximations (the corresponding

QQ-plots form almost a perfect diagonal). One may be surprised especially with the performance
of the second lower bound — it turns out that the results are not less accurate for 1 conditioning
random variable than in case of 2 conditioning random variables. The latter lower bound has
even slightly higher variance — 10.2450 compared to 10.2230 computed for the first distribution.

These visual observations are confirmed by the numerical values of some upper quantiles dis-
played in Table 1 (in the table we include also two moment-based approximations, which also
perform excellent).

4.2 Elliptically distributed payments

4.2.1 Definition

The class of elliptical distributions is a natural extension of the normal law. We say that a
random vector �X =

(
X1,X2, . . . ,Xn

)
has an n-dimensional elliptical distribution with para-

meters �µ =
(
µ1, µ2, . . . , µn

)
, Σ =

[
σij

]
1≤i,j≤n

(symmetric and positive definite matrix) and

characteristic generator φ(·) if the characteristic function of �X is given by

ϕ �X

(
�t
)

= ei�tT �µφ
(
�tT Σ�t

)
.

We write �X ∼ En(�µ,Σ, φ). Obviously the normal distribution satisfies this definition, with
φ(y) = e−

1
2
y. Elliptical distributions are very useful for several reasons. First of all they are

very easy to manipulate because they inherit surprisingly many properties from the normal
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law. On the other hand the normal distribution is not very flexible in modelling tails (in
practice we often encounter much heavier tails than the Gaussian ones). The class of elliptical
laws offers a full variety of random distributions, from very heavy-tailed ones (like Cauchy or
stable distributions), distributions with tails of the polynomial-type (t-Student), through the
exponentially-tailed Laplace and logistic distributions to the light-tailed Gaussian distribution.

Below we give a brief overview of the properties of elliptical distributions. More information
about elliptical distributions can be found e.g. in Valdez & Dhaene (2004).

1. E[Xi] = µi, Var[Xi] = −2φ′(0)σii and Cov(Xi,Xj) = −2φ′(0)σii if only the corresponding
moments exist;

2. Let �Y = A �X + �b, where A denote m × n-matrix and �b is a vector in R
n. Then �Y ∼

Em

(
A�µ +�b,AΣAT , φ

)
;

3. If the density function f �X
(·) exists, it is given by the formula

f �X(�x) =
c√

det
[
Σ

]g
(
(�x − �µ)T Σ−1(�x − �µ)

)

for any non-negative function g satisfying

0 <

∫ ∞

0
z

1
2
d−1g(z)dz < ∞

and c being a normalizing constant. The function g(·) is called the density generator of
the distribution Em

(
�µ,Σ, φ

)
;

4. Let �X =
(

�X1, �X2

)
denote a En+m(�µ,Σ, φ)-random vector, where �µ =

(
�µ1, �µ2

)
and

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
.

Then, given conditionally that �X2 = �x2, the vector �X1 has the En(�µ1|2,Σ11|2, φx2)-distribution
with parameters given by

�µ1|2 = �µ1 + Σ12Σ−1
22

(
�x2 − �µ2

)
and

Σ11|2 = Σ11 − Σ12Σ−1
22 Σ21.

Notice that in general (unlike in the normal case) the characteristic generator of the con-
ditional distribution is not known explicitly and depends on the value of x2.
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4.2.2 Convex upper and lower bounds

Consider a sum of the form

Sel =
n∑

i=1

Xie
−Y (i),

where the return process Y (t) is, like in the previous example, described by the Black &
Scholes model and �X =

(
X1,X2, . . . ,Xn

)
is elliptically distributed with parameters �µ �X =(

µX1, µX2 , . . . , µXn

)
, Σ �X =

[
σ

�X
ij

]
1≤i,j≤n

and characteristic generator φ(·). Here we note only

that for φ(u) = e−
u
2 one gets a multivariate normal distribution with mean parameter equal to

�µ �X and the covariance matrix Σ �X .

Note that elliptical random variables take both positive and negative values and therefore one
cannot apply immediately Theorem 2. Therefore we propose to consider pragmatically only
the cases where the probability Pr[Xi < 0] is very small. This can be achieved by chosing the
parameters in such a way that

µXi
σXi

>> 0. (σ2
Xi

not= σ
�X
ii )

The upper bound The computation of the upper bound is straightforward if the inverse dis-
tribution function for the specific elliptical distribution is available in the used software package.
We take

Su
el =

n∑
i=1

F−1
En(µXi

,σ2
Xi

,φ)

(
U1

)
e−iµ+σiΦ

−1(U2), (27)

Note that for the most interesting case of a multivariate normal distribution, one gets

Su
N =

n∑
i=1

(
µXi + σXiΦ

−1(U1)
)
e−iµ+σiΦ

−1(U2).

The lower bound To compute the lower bound, we define the conditioning random variable
Θ as follows

Θ =
n∑

j=1

E
[
e−Y (j)

]
Xj =

n∑
j=1

e−jµ+ 1
2
σ2

j Xj .

Then a random vector
(
Xi,Θ

)
has a bivariate elliptical random variable, with parameters �µΘ,i =(

µXi , µΘ

)
and ΣΘ,i =

[
σΘ,i

kl

]
1≤k,l≤2

, where

µΘ =
n∑

j=1

e−jµ+ 1
2
σ2

j µXj ,

σΘ,i
11 = σ2

Xi
, σΘ,i

12 = σΘ,i
21 =

n∑
j=1

e−jµ+ 1
2
σ2

j σ
�X
ij and

σ2
Θ = σΘ,i

22 =
n∑

j=1

n∑
k=1

e−jµ−kµ+ 1
2

(
σ2

j +σ2
k

)
σ

�X
jk.
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From Section 4.2.1, item (4), it follows that, given Θ = θ, Xi has a univariate elliptical distrib-
ution with parameters

µXi,θ = µXi +
σΘ,i

12

σ2
Θ

(
θ − µΘ

)
, σ2

Xi,θ = σ2
Xi

−

(
σΘ,i

12

)2

σ2
Θ

(28)

and unknown characteristic generator φa(·) depending on a = (θ−µΘ)2

σ2
Θ

.

Note that for the multivariate normal case the conditional distribution remains normal. In our
application it does not really matter that the characteristic generator φa(·) is not known — it
suffices to notice that

E
[
Xi | Θ] = µXi,Θ = µXi +

σΘ,i
12

σ2
Θ

(
Θ − µΘ

)
.

The second conditioning random variable is chosen analogously as in (25), i.e.

Λ = −
n∑

i=1

E[Xi]e−iµ+ 1
2
σ2

i Y (i) = −
n∑

i=1

µXie
−iµ+ 1

2
σ2

i Y (i).

Applying the results of Section 3.2, the lower bound is given by the following expression:

Sl
el =

n∑
i=1

(
µXi +

σΘ,i
12

σ2
Θ

(
F−1

Θ (U1) − µΘ

))
e−iµ+ 1

2
σ2

i (1−r2
i )+riσiΦ

−1(U2), (29)

where the correlations ri = Corr
(
− Y (i),Λ

)
are defined as in (16) (with E[Xi] substituted by

µXi). Note that expression (29) simplifies in the normal case to

Sl
N =

n∑
i=1

(
µXi + rXiσXiΦ

−1(U1)
)
e−iµ+ 1

2
σ2

i (1−r2
i )+riσiΦ−1(U2),

where

rXi = Corr(Xi,Θ) =

∑n
j=1 µXje

−jµ+ 1
2
σ2

j σ
�X
ij

σXi

√∑n
k,l=1 µXk

µXl
e−kµ−lµ+ 1

2

(
σ2

k+σ2
l

)
σ

�X
kl

.

4.2.3 A numerical illustration

Now we evaluate numerically the case when future payments are normally distributed, with
mean parameter µXi = 1 and variance σ2

Xi
= 0.01 (note that mean and variance are the same

as in the log-normal case, see Section 4.1.2). Like in the log-normal case, we also impose some
positive dependencies between payments, given by

r(Ni, Nj) =




1 if i = j
0.5 if |i − j| = 1
0.2 if |i − j| = 2,
0 if |i − j| > 2.
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Figure 2: The convex upper bound Su
N (triangles), the lower bound Sl

N (inverse triangles) and
the moment-based approximation Sm

N (solid circles) versus the simulated distribution of SN (solid
line) — the cdf’s and the QQ-plot

As in Section 4.1.2, we work in the framework of the Black & Scholes model with drift parameter
µ = 0.05 and volatility σ = 0.1. We compare the distributions of the lower bound Sl

N , the upper
bound Su

N and the moment-based approximation Sm
N to the empirical distribution of SN obtained

by means of a Monte Carlo simulation based on 500 × 100 000 simulated paths.

The performance of the approximations is illustrated on Figure 2. Note that the graphs look
almost exactly the same as in the log-normal case — the upper bound Su

N gives a quite poor
approximation, while the lower bound Sl

N and the moments-based approximation perform excel-
lent. These visual observations are confirmed by the numerical values obtained for some upper
quantiles displayed in Table 2.

p SN (s.e.×103) Sl
N Sm

N Su
N

0.75 14.6820 (0.70) 14.6820 14.6849 15.0368
0.90 17.1025 (1.02) 17.0978 17.1068 18.0992
0.95 18.7789 (1.46) 18.7642 18.7787 20.2522
0.975 20.3895 (2.11) 20.3630 20.3840 22.3456
0.995 24.0354 (4.61) 23.9599 24.0020 27.1468

Table 2: Approximations of upper quantiles of SN for some probability levels p

4.3 Independent and identically distributed payments

Finally we consider the case where the payments Xi are independent and identically distributed.
The independence assumption accounts for more flexibility in modelling the underlying marginal
distributions, however — unlike in the log-normal and elliptical cases — it imposes a rigid
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condition on the dependence structure. We start with defining the class of tempered stable
distributions for which the methodology works particularly efficient.

4.3.1 Tempered stable distributions

The Tempered Stable law T S(δ, a, b) for a, b > 0 and 0 < δ < 1 is a one-dimensional distribution
given by the characteristic function:

ϕT S(t; δ, a, b) = eab−a
(
b
1
δ −2it

)δ

. (30)

(See e.g. Schoutens (2003)). This distribution has one very special property, i.e. namely one has
that (

ϕT S(t; δ, a, b)
)n

= ϕT S(t; δ, na, b).

Therefore, a sum of n independent and identically distributed tempered stable random variables
is again tempered stable, with the only difference that the parameter a is transformed to na.

The first two moments of a random variable X ∼ T S(δ, a, b) are given by E[X] = 2aδb
δ−1

δ and
Var[X] = 4aδ(1 − δ)b

δ−2
δ .

In the sequel we provide more details about two well-known special cases: the gamma distribu-
tion and the inverse Gaussian distribution.

The gamma distribution The gamma distribution Γ(a, b) corresponds to the limiting case
when δ → 0. Therefore, the characteristic function of the Γ-distribution is given by

ϕΓ(t; a, b) =
(
1 − it

b

)−a
,

what corresponds to the density function

fΓ(x; a, b) =
ba

Γ(a)
xa−1e−bx, x > 0.

Note that X ∼ Γ(a, b) one has E[X] = a
b and Var[X] = a

b2
.

The inverse gaussian distribution The inverse Gaussian distribution is a member of the
class of Tempered Stable distributions with δ = 1

2 . Thus, the characteristic function is given by

ϕIG(t; a, b) = e−a
(√

−2it+b2−b
)
,

what corresponds to the density function

fIG(x; a, b) =
a√
2π

x− 3
2 eab− 1

2

(
a2

x
+b2x

)
, x > 0.

Moreover the mean and variance of X ∼ IG(a, b) are given by E[X] = a
b and Var[X] = a

b3
.

Tempered Stable random variables are very useful in our application because of the following
result:

16



Lemma 2 If Xi are i.i.d. random variables T S(κ, a, b)-distributed for i = 1, 2, . . . , n, then their
sum X1 + X2 + · · · + Xn is T S(κ, na, b)-distributed.

Proof. Consider the corresponding characteristic functions. We get

ϕX1+X2+···+Xn(t) =
(
ϕT S(t;κ, a, b)

)n = e(na)b−(na)(b
1
κ −2it)κ

= ϕT S(t;κ, na, b).

4.3.2 Convex upper and lower bounds

We consider sums of the form

Sind =
n∑

i=1

Xie
−Y (i),

where the process Y (i) is defined like in the previous examples whereas payments Xi are inde-
pendent and follow the law defined by the cdf FX(·).

The upper bound The computation of the upper bound is straightforward:

Su
ind = F−1

X (U1)
n∑

i=1

e−iµ+σiΦ−1(U2)

as described in Section 3.1.

The lower bound We begin with defining conditioning random variables Θ and Λ to compute
the lower bound. Let

Θ = X1 + X2 + · · · + Xn.

It is well-known that if we know distributions of Xi, the distribution of Θ is also known. Indeed,
it can be defined e.g. by a characteristic function as

ϕΘ(t) =
(
ϕX(t)

)n
.

Note that under some integrability conditions the distribution function can be expressed by
means of a characteristic function (see e.g. Feller (1971) for details). However if Xi are Tempered
Stable random variables with known distribution functions then the distribution function of Θ
is of the same type and a time-consuming procedure of transforming the characteristic function
can be avoided. In particular, for Xi Γ-distributed the sum Θ remains Γ-distributed and for Xi

IG-distributed the random variable Θ remains IG-distributed.

Next, the conditional random variable Λ is chosen, like in previous examples, as

Λ = −
n∑

i=1

E[Xi]e−iµ+ 1
2
σ2

i Y (i). (31)
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Then the lower bound can be written as

Sl
ind =

1
n

F−1
Θ (U1)

n∑
i=1

e−iµ+ 1
2
(1−r2

i )σ2
i +riσiΦ

−1(U2),

where the correlations ri = Corr
(
− Y (i),Λ

)
are defined as in (16).

Cumulative distribution functions In this case there is a more efficient method to compute
the distribution functions than the one described in Sections 3.1 and 3.2. We use the following
result.

Lemma 3 Let W be a random variable of the form W = X̃Ṽ , where X̃ and Ṽ are independent.
Then the distribution function of W can be derived as

FW (y) =
∫ ∞

−∞
FX̃

(y

v

)
dFṼ (v) =

∫ 1

0
FX̃

(
y

F−1
Ṽ

(u2)

)
du2. (32)

Proof. See Appendix B in Hoedemakers et al. (2003).
Therefore one can compute the cumulative distribution functions of the upper and the lower
bound as

FSu
ind

(y) =
∫ 1

0
FX

(
y

F−1
S̃u

(u2)

)
du2 and

FSl
ind

(y) =
∫ 1

0
F 1

n
Θ

(
y

F−1
S̃l

(u2)

)
du2,

where

S̃u =
n∑

i=1

e−iµ+σiΦ−1(U2), S̃l =
n∑

i=1

e−iµ+ 1
2
(1−r2

i )σ2
i +riσiΦ−1(U2) and

F−1
S̃u

(u2) =
n∑

i=1

e−iµ+σiΦ
−1(u2), F−1

S̃l
(u2) =

n∑
i=1

e−iµ+ 1
2
(1−r2

i )σ2
i +riσiΦ

−1(u2).

4.3.3 A numerical illustration

Now we present a numerical application of the method to the case when future payments are
independent, Γ-distributed, with parameters a = b = 100. Note that this choice of parameters
implies that E[X] = 1 and Var[X] = 0.01 — i.e. we take the same mean and variance of liabilities
as in the log-normal (Section 4.1.2) and normal (Section 4.2.3) cases. As before we work in the
Black & Scholes setting with drift µ = 0.05 and volatility σ = 0.1. We compare the obtained
distributionsof Sl

Γ, Su
Γ and Sm

Γ to the empirical distribution of value SΓ obtained in the same
fashion as in previous cases.

The results are very similar to the normal and log-normal case. It is worth noticing that the
variance of SΓ (10.1489) s a bit lower that in the log-normal case (10.2789) and in the normal case
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Figure 3: The convex upper bound Su
Γ (triangles), the lower bound Sl

Γ (inverse triangles) and the
moment-based approximation Sm

Γ (solid circles) versus the simulated distribution of SΓ (solid
line) — the cdf’s and the QQ-plot

(10.2792). It is a consequence of independence between consecutive Γ-payments while before we
imposed a slight positive dependence.

The quality of the approximations is illustrated in Figure 3. One can see that the fit of the
upper bound is quite poor. The lower bound Sl

Γ and the moments based approximation Sm
Γ

perform very well, but a bit poorer than in the log-normal and normal cases (probably because
the conditioning random variable Θ does not take discounting factors into account). These
visual observations are confirmed by the numerical values of some upper quantiles, contained in
Table 3.

p SΓ (s.e.×103) Sl
Γ Sm

Γ Su
Γ

0.75 14.6820 (0.70) 14.6709 14.6723 15.0320
0.90 17.1025 (1.02) 17.0767 17.0810 18.0984
0.95 18.7789 (1.46) 18.7372 18.7443 20.2563
0.975 20.3895 (2.11) 20.3309 20.3412 22.3560
0.995 24.0354 (4.61) 23.9183 23.9390 27.1762

Table 3: Approximations of upper quantiles of SΓ for some probability levels p

5 Conclusion

In this paper we present a methodology that allows us to obtain accurate approximations for
distribution functions of scalar products of independent random vectors for which no direct
analytical expression exist. The approach is based on deriving upper and lower bounds in
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a sense of convex order for the underlying distribution, which has a very natural economical
interpretation in terms of the utility theory or Yaari’s dual theory of choice under risk. Our
methodology is an extension of results obtained in Dhaene et al. (2002a,b) and Hoedemakers et
al. (2003, 2004a).

As demonstrated in a series of numerical examples, the technique provides a very useful tool
to evaluate cash flows of future stochastic payments. The distributions of the lower bound and
the moment-based approximation are almost indistinguishable from the empirical distribution,
obtained by means of a Monte Carlo simulation. It should be noted however that a Monte
Carlo simulation is much more time consuming than our approximations, and despite that the
simulated values of upper quantiles are still quite volatile.

The methodology finds much wider range of applications than the ones presented in the paper. In
Hoedemakers et al. (2004b) a similar approach is employed to find an approximate distribution
of a life annuity. The same technique is also applied in Ahcan et al. (2004) to find an optimal
asset mix in the multi-period portfolio selection problem.
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