A General Solution Algorithm for The Linearly
Constrained Global Optimization Problems

Hossein Arsham
University of Baltimore, Baltimore, Maryland 21201, USA
harsham@UBmail.ubalt.edu

Miro Gradisar, Mojca Indihar Stemberger
University of Ljubljana, Faculty of economics,
1000 Ljubljana, Slovenia

mojca.stemberger@uni-lj.si, miro.gradisar@uni-lj.si

Abstract:

The article presents a simple alternative approach to solve general linearly constraint
optimization problems. This class of optimization problems includes fractional, nonlinear
network models, quadratic, and linear programs. The unified approach is accomplished
by converting the constrained optimization problem to an unconstrained optimization
problem through a parametric representation of its feasible region. The proposed solution
algorithm consists of three phases. In phase 1, the parametric representation of the
feasible region (the polyhedron) is constructed. Since in the case of nonlinear objective
function the optimum can appear at any point of the polyhedron, therefore, the edges
and faces have to be identified. This is done by a modified version of an algorithm
for finding the V-representation of the polyhedron. Then, in phase 2, the parametric
representation of the feasible region is used for the parametric representation of objective
function. Following this, the global optimal solution of the parametric objective function
is found by computing the stationary points and evaluation of the objective function at

these points as well as at the vertices.
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1 Introduction

Linearly constrained optimization problems are extremely varied. They differ in their
functional form of the objective function, constraints, and in the number of variables.
Although the structure of this problem is simple, finding a global solution — and even
detecting a local solution is known to be difficult to solve. The simplest form of this
problem is realized when the objective function is linear. The resulting model is a linear
program (LP). Other problems include fractional, nonlinear network models, quadratic,

separable, convex and nonconvex programs.

There are well over 400 different solution algorithms in solving different kinds of linearly
constrained optimization problems. However, there is not one algorithm superior to others
in all cases. For example in applying the Karush-Kuhn-Tucker (KKT) condition, it may
be difficult, if not essentially impossible, to derive an optimal solution directly [20]. The
most promising numerical solution algorithm is the feasible direction method, however, if
objective function is nonconvex then the best one can hope for is that it converges to a

local optimal point.

The paper develops a simple alternative approach to solve general continous optimization
problems with linear constraints. The unified approach is accomplished by converting the
constrained optimization problem to an unconstrained optimization problem through a
parametric representation of its feasible region.

The remainder of this paper is organized as follows: Section 2 presents the main phases
of the algorithm with some definitions and constructive theorems. The algebraic method
for finding all vertices, extreme rays, edges and faces of the feasible region is developed in
section 3. For better understanding of the presented concepts both sections are illustrated
by numerical examples. Two numerical examples of the algorithm are presented in section
4 in the context of numerical problems solved by other methods for comparative purposes.

The last section contains the conclusions with some useful remarks.

2 New Solution Algorithm

We want to solve the following problem with linear feasible region:
Problem P: Maximize f(x)

Subject to: Ax<b



with some variables z; have explicit upper and/or lower bounds and some are unrestricted
in sign, where A is m X n matrix, b is m-vector and f is a continuous function. Problem
P is a subset of a larger set of problems known as Continuous Global Optimization [25]

with diverse areas of applications [14, 19, 21, 24].

The feasible region of the problem P is obviously the set of points that defines the poly-
hedron. In the proposed solution we need to find all the stationary points of objective

function f inside and at the bounds of the polyhedron.

A polyhedron with finite number of vertices can be represented in two equivalent ways [8]:

H-representation and V-representation.

Definition 1 An H-representation of the polyhedron is given by an m X n matric A =

(ai;) and m-vector b = (b;):

S={xeR";, Ax<b}.

Definition 2 A vertex v € R™ is a point of S that satisfies an affinely independent set

of n inequalities as equations.

An extreme ray w € R™ is a direction such that for some vertex v and any positive scalar

W, v+ uw is in S and satisfies some set of n — 1 affinely independent inequalities as

equations.
Definition 3 An V-representation of S is given by a minimal set of M vertices vy, va,..., VM
and N extreme rays wi,Ws, ..., WN

M N M
S = {XER"; X=Z)\ivi+z,ujwj, Aiy 5 > 0, Z)\z’=1}-

i=1 j=1 i=1

Definition 4 A face of polyhedron S is a boundary set of S containing points on a line

or plane (or hyper-plane). An edge is the line segment between any two adjacent vertices.

If a feasible region is bounded then a corresponding polyhedron is called a polytope which

has no extreme rays. Its V-representation is given by a convex combination of the vertices.



Example 1:
The polyhedron in Figure 1, defined by

5IE1 — T2 S 30
I S 5
I Z 0

has two vertices and one extreme ray:

n[ e 2o []

which indicates that its parametric representation is given by

{(IEl,IEQ); (IEl,IEQ) = (5)\2, —30)\1 - 5)\2 -+ ,LL), )\1,)\2,,LL Z 0, )\1 + )\2 = 1}

v, =(5,-5)

Figure 1: Polyhedron for the example 1

The edge connecting both vertices can be expressed as

{(:Eth); (xth) = (5)\27 _30)\1 - 5)\2)7 )\17)\2 Z 07 )\1 + )\2 = 1}

Definition 5 The parametric representation of the objective function f is given by:

fx) = fxAw) = F(A ).



For example, the parametric representation of the function f(z1,z2) = 3} + 2 defined on

the polyhedron from Example 1 is given by

FA1, Az, 1) = 125X3 — 30A; — 5y + p

The proposed algorithm for the global solution of problem P is based on the following

theorem:

Theorem 1 The mazimum (minimum) points of an optimization problem P correspond

to the mazimization (minimization) of the parametric objective function f(A, u).

Proof: The proof follows from the fact that the parametric representation of z = z(\, u)

is a linear function.

The following result is applicable to LP problems.

Theorem 2 Let the terms with the largest (smallest) coefficients in f (A, u) be denoted by

AL and Ag respectively.

1. If we are looking for the mazimum of objective function and some coefficient at p;
(if any) is positive then the problem P has no solution. If all the coefficients are

negative the optimal value ts obtained at the verter corresponding to Ap,.

2. If we are looking for the minimum of objective function and some coefficient at u;
(if any) is negative then the problem P has no solution. If all the coefficients are

positive the optimal value is obtained at the vertex corresponding to Ag.

Proof: The proof follows from the fact that if we are looking for maximum and some
coefficient at p; > 0 is positive then the problem has no solution, since the objective
function can have arbitrary large values. Otherwise the largest value of f is obtained by

setting Az, to 1 and all the others A\; = 0 and y; = 0. The proof for minimum is similar.
This is a new proof of the well-known fundamental result in the simplex algorithm.
Unlike linear programs, the optimal solution of nonlinear programs does not have to be
a vertex of the polyhedron. Although there exist general solution algorithms for linear

programs, for nonlinear programs more advanced solution algorithms are required. For

example, the Lagrange Multiplier method [17] can be used to solve optimization problems

5



with equality constraints and the Karush-Kuhn-Tucker approach [16] can also be used to
solve convex optimization problems. There are also special solution algorithms for special

classes of problems, such as fractional and quadratic programs.

In the case of nonlinear objective function we are looking for its stationary points, that are
the points, where gradient vanishes, or it fails to exist, over an open set domain. First, we
find stationary points on the interior points of the feasible region. Next, we find stationary
points on interior points of the faces of the feasible region, then on interior points of the
edges (e.g., line segments) of the feasible region. Finally, by functional evaluation of
the objective function at the stationary points and at the vertices of the feasible region
the global optimal solution is found. Therefore, in solving an n dimension problem, we
solve some unconstrained optimization problems in n, n — 1,...,1 dimensions. Thus,
removing the constraints by the proposed algorithm reduces the constrained optimization

to unconstrained problems which can be more easily dealt with.

The following provides an overview of the algorithm’s process strategy:

Phase 1: Find the V-representation of the feasible region (the polyhedron). If the
objective function is nonlinear, find the edges and faces too.

Phase 2: Construct the parametric representation of the objective function.

Phase 3: If f(x) is a linear function, then perform step a) otherwise perform step b).

a) If we are looking for the maximum (minimum) and some coefficient at p,; (if any)
is positive (negative) then the problem P has no solution. Otherwise the maximum

(minimum) value is obtained at the vertex with the largest (smallest) coefficient.

b) Find the stationary points of the parametric version of the objective function over
the interior, the faces, and the edges of the feasible region. Evaluate the objective

function at the stationary points and the vertices. Select the global optimal point.

Since the first step of the algorithm is seems to be time consuming, it deserves special

treatment. An efficient algorithm that implements it is described in next section.



3 Finding the vertices, extreme rays, edges and faces

of the polyhedron

There are essentially two main approaches to the problem of generating all the vertices
of the polyhedron, both with the origins in the 1950s. The double description method
[23] involves building the polytope sequentially by adding the defining inequalities one
at a time. Recent algorithms and practical implementations of this method have been
developed by Fukuda and the others [12, 18]. This method seems very powerful for

degenerate polytopes but has the disadvantage that it can require a lot of memory.

The second method for finding all the vertices and extreme rays of the polyhedron involves
pivoting around the skeleton of the polytope. An efficient method using this approach is

the reverse search method by Avis and Fukuda [10] and the revisited version [8].

If the intention is to find the solution of linearly constraint optimization problem it is
not enough to determine only the V-representation of the polyhedron since the optimal
value can appear at any point of the polyhedron not only in a vertex as in the case of
linear programming. It means that in addition to vertices and extreme rays edges and
faces of the polyhedron have to be found. They can be found with the modification of the
algorithm for finding V-representation described in [13] that is based on the work of [15].
The algorithm belongs to the second group of the algorithms mentioned above since it
systematically finds all vertices and extreme rays by using the breath first search method
of the graph defined by the skeleton of the polyhedron. We suggest some modifications of
that algorithm that enable finding the edges and faces of the polyhedron. The algorithm
with the modifications is described below. The choice of the algorithm is made upon the

fact that it enables us to extend it with the steps needed for finding the edges and faces.

Let S be the polyhedron expressed in H-representation. Since some inequalities can be
explicit lower or upper bounds we can use a little different representation after adding

slack variables as described in [13]:
Ax=b, I<x<u

where 1 and u are vectors describing lower and upper bounds of the variables.

If we investigate basic feasible solutions of above system we can see that every such solution

x* is fully determined by specifying which of the variables are basic, which nonbasic

variables are at their lower bounds, and which nonbasic variables are at their upper
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bounds. The resulting partition of z* into three parts will be referred to as a basic
feasible partition. If A has size m X n of a full row rank, then the basic feasible partition

may be represented by the vector p = (p1,p2, ..., P,) such that

pr, =1 if 1z is basic
pr, =0 if zj is nonbasic and z} = I < uy

pr =2 if z} is nonbasic and z} = uy

Two basic feasible partitions are said to be neighbors of each other if they can be obtained
from each other by a single pivot. It is assumed that the reader is familiar with the terms
used by the algorithm that have the same meaning as by Revisited Simplex Method,
where basis matriz B denotes a m X m matrix, which contains those columns of matrix A
that correspond to basic variables. Similarly xg is a m-dimensional vector composed of
the values of basic variables in corresponding vertex. All the other details are described
in [13].

The algorithm starts with a basic feasible partition p* and produces all of it’s neighbors.
Then the neighbors of each new feasible partition are found until all the vertices are
produced. To produce all the neighbors of a basic feasible partition p we have to consider
only each nonbasic variable z; with [; < u; in turn to replace its value z} by z; + ¢ or
x; —t with ¢ as large as feasibility allows. If £ can be arbitrarily large, then we discover an
extreme ray that is the neighbor of p; otherwise, we discover one or more basic feasible
partitions that are neighbors of p. The neighbors are found by pivoting that is similar
as by the Revised Simplex Method with the exception that this algorithm finds all the

neighbors of some vertex not only the most promising one.

More formally the algorithm, which has been modified by adding step 2 ¢) for finding the

edges too, may be described as follows:

1. Set p1r=p*, M=1,N=0, L =0, k=1, and let vy be the basic feasible solution
determined by p;.

2. Produce all the neighbors of py.

(a) Whenever a basic feasible partition p is produced that is not on the current
list, set M = M 4+ 1, pm = P, vm = Vv, where v is the corresponding basic

feasible solution.

(b) Whenever an extreme ray w is produced that is not on the current list, set
N=N+1,wn =w.



(c) Whenever an edge e is produced that is not on the current list, set L = L+ 1,

er, = €, and continue by producing the neighbors of py.

3. If k < M set k=k+ 1 and return to step 2.

The algorithm finds the vertices, extreme rays and edges of the polyhedron. But in the
case of nonlinear programming the faces of dimension n—1, n—2,...,2 have to be found
too. It is easy to determine (n — 1) dimensional faces since we only have to find those
basic feasible partitions that have some component equal to 0 or to 2. The basic feasible
partition that have the k-th component equal to 0 correspond to the equation z; = I

and those that have the k-th component equal to 2 correspond to the equation z; = uy.

The (n — 2) dimensional faces are determined by the basic feasible partitions that have

two same components (equal to 0 or to 2) and the lower dimensional faces in similar way.

Example 2:

Suppose we want to find the vertices, extreme rays, edges and faces of the polyhedron

that is drawn in Figure 2 defined by

IA

10
24

T+ 22+ X3

371 + 3

VAR VAN
o

T1,%2,T3

——\_ 10

Figure 2: Feasible region (the polyhedron) for the Example 2



By adding slack variables x4 and x5 we can convert the problem to

Ax=b, 1<x<u

11110 10
A. == b =
3 01 01 24

1 = [0,0,0,0,0" u = [00, 00, 00, 00, 09|

where

T

Since v = [0,0,0,10,24]T is the basic feasible solution determined by the basic feasible

partition p* = [0,0,0,1, 1] we can start with the first step of the algorithm by
Vi =YV, plzp*, le, k=1

First we have to find all the neighbors of p; with corresponding basic feasible solutions

or extreme rays and edges. The basis matrix is

2=y

Since we have three possible entering variables =, zo and x5, three systems Ad = a;,
1 = 1,2,3, where a; denotes the i-th column of matrix A, have to be solved. For each

solution d we have to find the largest ¢ for which xg — ¢d > 0.

e For the entering variable z; we get the solution d = [1,3]T and ¢ = 8. It means that
we have new basic feasible solution v = [8,0,0,2,0]T, the basic feasible partition
p2 =[1,0,0,1,0] and the edge e; = (v1, ve) is added to the list of edges.

e For the entering variable z, we get the new basic feasible solution vs = [0, 10,0, 0, 24]7,
the basic feasible partition ps = [0,1,0,0, 1] and the edge e; = (v1,v3) is added to
the list of edges.

e For the entering variable z3 we get the basic feasible solution v4 = [0,0, 10,0, 14]7,
the basic feasible partition pg = [0,0, 1,0, 1] and the edge es = (v1,vy4) is added to
the list of edges.

We have found all the neighbors of the first basic feasible partition that determine all the

neighbor vertices of the vertex [0,0,0]7. These are the vertices
8,0,07, [0,10,0]", [0,0,10]".
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Now we have to proceed by finding all the neighbors of the basic feasible partition p2

(vertex [8,0,0]T). Since z; and z, are the basic variables the basis matrix is

S

e For the entering variable x5 we get

vs = [8,2,0,0,0]7
Ps = [171707070]
€4 = (V2,V5)

e For the entering variable x5 we get

ve = [7,0,3,0,0]7
Pse = [170717070]
€ = (V27V6)

e For the entering variable x5 we do not get any new vertex or edge.

In the next step of the algorithm we are looking for the neighbors of basic feasible partition
ps (k = 3). Actually all the vertices of the polyhedron have been found so far and since
the polyhedron is bounded it has no extreme rays. But the algorithm does not terminate
until £ = M. Therefore in the following steps only the new edges of the polyhedron will
be added.

While looking for the neighbors of ps edges
€¢ = (V3,V5), and ey = (V3,V4)
are added to the list of edges.

Now we have to find the neighbors of three remaining basic feasible partitions p4, ps and
Ps- The edges

es = (v4,vg), and eg = (vs,Vg)
are found and added to the list of edges.

We have found so far all the vertices and edges of the polyhedron. If we summarize the

vertices are

0 8 0 0 8 7
Vi1 = 0 , V2 = 0 , Vg = 10 , V4 = 0 , Vg = 2 , Vg — 0
0 0 0 10 0 3
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and the edges

e; = (v1,v2), ex = (vy,vs), es=(vy,Vy),

e4 = (v2,vs5), e5 = (va,vg), € = (Vs,Vs),

er = (vs,va), €g = (va,Vvg), €9 = (Vs5,Vs)
The faces of the polyhedron can be determined too if we examine the found basic feasible
partitions. By finding all the basic feasible partitions p; which have the first component
equal to 0 the face that responds to the equation z; = 0 is determined. In our case the
corresponding basic feasible partitions are p;, ps and p4. It means that the first face of

the polyhedron can be expressed as
f1 ={x; x=Av1i +A3v3 + MV, A, A3, A4 20, A+ A5+ M =1}

Similarly the other faces can be determined. Basic feasible solutions with the second

component equal to 0 (respond to z3 = 0) determine the face
f2 = {X; X = )\1V1 + )\2V2 + )\4V4 + )\6V67 )\1, )\2, )\4, )\6 Z 0, )\1 + )\2 + )\4 + )\6 = 1}

Basic feasible solutions with the third component equal to 0 (respond to z3 = 0) determine
the face

f3 = {x; x = Avi 4+ Aava + A3va + Asvs, AL Ao, Ag, A5 2 0, AL+ A2+ A3+ A5 =1}
The remaining two faces are
fa = {x; x = A3va + Mva + AsVs + AsVe, A3, A0, A5, 06 2 0, A3+ A+ A5 + Ag = 1}

and
f5 = {X; X = )\2V2 + )\5V5 + )\6V67 )\2, )\5, )\6 Z 0, )\2 + )\5 + )\6 = 1}

The time complexity of the above algorithm is not high. The main computational burden
involved in each execution of step 2 comes from solving the n — m systems Bd = a with
B standing for basis matrix and a running through all the nonbasic columns. This task
requires no more than m?(n—2m/3) multiplications [13]. Finding out if the most recently
produced vertex, extreme ray or edge is already on the list could be time consuming but
the data structures such as balanced trees, such as those developed in network solution
algorithms, can be used for the representation of the list. So the total running time of

the algorithm is proportional to m2nM.

There are many other techniques for finding the vertices of the polyhedron [9]. Some
algorithms that ware mentioned above are faster but they do not find the edges and faces.
They can be used in the case if f is linear since then only vertices have to be found.

Another algorithm for face and edge identifications can be found in [6].
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4 Numerical examples

In the following two examples, we demonstrate how the proposed solution algorithm can

be used to solve general linear and nonlinear programs over polyhedron S.

Example 3:

The following is a "test” problem:

Min — 423 + 31) — 6z,
subject to: 1 +xzo < 4
2:51 + Zo S 5

—x1+4zy > 2

Ty, Ly = 0

This test problem is a nonconvex program from [26, pages 133-136], that was chosen as
an example to demonstrate the difficulties for finding the global solution for this types
of problems by any existing methods. In [26] the objective function behavior over the
feasible region, that is drawn in Figure 3, is investigated by drawing some iso-values
curves of the objective function to illustrate the difficulties involved in solving general

optimization problems even for this small size test problem.

A X2

v;=(0,4)
€4

v,=(0,1/2)

3"

Figure 3: Feasible region for the example 3

In [26] an excellent and detailed discussion of serious difficulties is provided, such as:

e nonconvex programs are more difficult to solve than convex programs,
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e even specialized algorithms such as separable programming methods can guarantee

no more than a local optima to such problems, and

e although such problems may be handled by interior point methods such as the

penalty functions algorithm, it is computationally expensive.

Accordingly [26, pages 133-136] detects the optimal solution only by graphical observation
and not by any algorithmic approach. We solve this test problem, without referring to

any graphical method using the proposed algorithm.

Applying the results of Section 3, the vertices of the feasible region are:

o IS B S B A

€; = (V1,V2), € = (V1,V4)7

€3 = (V27V3), €4 = (V3,V4)-

and the edges

The parametric representation of the feasible region is:
{(IEl, IEQ); (IEl, IEQ) = (2)\1 4+ Ao, At + 33X + 43 + 1/2)\4),

)\1,)\2,)\3,)\4 Z 0, )\1 +)\2+)\3+)\4 == 1}

By substituting the parametric version of the feasible region into the objective function

we obtain:
FOO = =420 + 22)3 +3(2X01 + X9) —6(A + 32y +4X5 + 1/2))
= 3227 —4A3 — 48)2); — 24050 — 15Xy — 24X3 — 3\

over the closed domain A1, Ag, A3, Ay > 0, and A\ + A + A3 + Ay = 1. Since gradient is not
defined over a closed set, we need to treat interior points of the feasible region separately
from edges and vertices. By substituting \y = 1 — A\ — Ay — A3 we get the objective

function over the interior points of the feasible region:

The gradient does not vanish since the derivative with respect to Az is -21.

The next step to do is to find stationary points over the four edges. The parametric

representation of the edge e is
e = {(IEl,IEQ); (IEl,IEQ) = (2)\1 + )\2,)\1 + 3)\2), )\1,)\2 Z 0, )\1 + )\2 = 1}

14



After substituting Ay = 1 — A, the parametric objective function is:
fO1) = =423 — 1207 — 3X; — 19

over the open set 0 < A\; < 1, which has a stationary point at A\; = 0.118 with f(\) =
—18.82.
Representation of f()) on the interior of the edge e joining the vertices vy and vy after
substituting Ay = 1 — )A; is expressed by

f(A) = —=3203 +3X\, — 3
over the open set 0 < A; < 1, which has a stationary point at A\; = 4/1/32 with f(\;) =
—2.65.

Similarly we get the stationary point on the edge es joining the vertices v, and vg for
Ay = 4/3/4 with f(Ag) = —18.80. On the remaining edge e4 is no stationary point.

The values of the objective function at the vertices are presented in Table 1.

AL | ds | M| F(®)
wl1]|0|o0]o0]|-32
w|0|1]l0]0]| 19
v |00 [1]0]| 24
w|0|l0]|0|1]| -3

Table 1: Function values at the vertices for Example 3

Now, comparing all the functional evaluations of f(\) at all the stationary points and at
the vertices, the optimal solution has A; = 1 and all other \; = 0. This gives the global
optimal solution (z; = 2, 5 = 1) yielding the global optimal value of -32.

Next example shows the use of proposed algorithm in the case of unbounded feasible
region.
Example 4:

The following linear program is from [27, page 155] which is solved therein with Simplex

Method by first converting the unrestricted variable to two non-negative variables [11].

The problem is
Max 30151 - 4IE2

15



IA

30
)
0

subject to: bx; — x9

IA

1

AV

I

2 1is unrestricted in sign

Figure 1 in Example 1 presents feasible region, which is the polyhedron with two vertices

n[ e[S (]

It’s V-representation is given by

and one extreme ray:

{(151,152); (:Ehx?) = (5)‘27 _30)‘1 - 5)‘2 + M)? )\1,)\2,,LL > 07 )‘1 + )‘2 = 1}
and parametric representation of objective function by

f()\l, )\2, ,LL) = 150)\2 + 120)\1 + 20)\2 - 4,u
= 120\ + 170X — 44.

Since we are looking for maximum and the coefficient at p is negative, the optimal value
occurs by setting As = 1 and Ay = p = 0. It means that the optimal value of objective

function 170 is obtained at the vertex vy, which is z; = 5, and 2o = —5.

Suppose we wish to maximize =, —z2+4z,, subject to same feasible region. The gradient of
the objective function is (1, —2z5 +4), which is nonzero. Therefore, there is no stationary
point in the interior of the feasible region. Also, it can be shown that there is no stationary

point on the edge joining the two vertices v; and va.

To find the stationary points on the interior points of extreme ray rooted at vy in the

direction of w we first have to construct its parametric version as:
{(z1,22); (21,22) = (0,—30) + p(0,1) = (0, =30 + p), p > 0}.
Then we have to construct the parametric objective function
() = —(=30 4 )2 + 4(=30 + p) = —p® + 64 — 1020

over the open domain p > 0. The derivative vanishes at u = 32, therefore a stationary

point is at (0,2), with the objective function value of 4.
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Similarly, to find the stationary points on the interior points of extreme ray rooted at

vertex vy in the direction of w we have to construct its parametric representation as:
{(z1,22); (z1,22) = (5,=5) + p(0,1) = (5, =5 + p), p > O}.
Now we can construct the parametric objective function, which is
f(w) =5 = (=5+p)* + 4(=5+p) = —p* + 14y — 40

over the open domain p > 0. The derivative vanishes at y = 7, which implies that a

stationary point is at (5,2), with the objective function value of 9.

The objective function values at both vertices are -1020 at vy and -40 at v,. Since we
are looking for a maximum, the global optimal solution is: z; = 5 and z, = 2 with the

optimal value 9.

5 Conclusion

We have presented a new solution algorithm for the general linearly constrained optimiza-
tion problems with continuous objective function. For a polyhedron specified by a set of
linear equalities and/or inequalities, the proposed solution algorithm utilizes its paramet-
ric representation. This parametric representation of the feasible region enables us to
solve a large class of optimization problems including fractional linear programming and
quadratic linear programming. The key to this generalized solution algorithm is that the
constrained optimization problem is converted to an unconstrained optimization problem

through a parametric representation of the feasible region.

It favorably compares with other methods for this type of problems. The proposed algo-
rithm, unlike other general purpose solution methods, such as KKT conditions, guarantees
global optimal solution, it has simplicity, potential for wide adaptation, and deals with
all cases. However, this does not imply that all distinction among problems should be
ignored. One must incorporate the special characteristic of the problem to modify the

proposed algorithm in solving them.

While the Lagrange and KKT (penalty-based) methods ”"appear” to remove the con-
straints by using a linear (or nonlinear) combination of the constraints in a penalty func-
tion, the proposed solution algorithm, however, uses the linear convex combination of

vertices to remove the constraints. The main drawback for the proposed algorithm is that
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all the vertices of the feasible region have to be found. However, there are quite efficient

techniques to apply which may be in the Reference section.

Some areas for future research include development of possible refinements such as, decom-
position by way of not the convex combination of all vertices, but some, say k, k > n+ 1.
An immediate work is development of an efficient computer code to implement the ap-
proach, and performing a comparative computational study. A convincing evaluation for
the reader would be the application of this approach to a problem he/she has solved by

any other method.
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